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Abstract
Understanding and quantifying populations' adaptive genetic variation and their re-
sponse to climate change are critical to reforestation's seed source selection, forest 
management decisions, and gene conservation. Landscape genomics combined with 
geographic and environmental information provide an opportunity to interrogate 
forest populations' genome-wide variation for understanding the extent to which 
evolutionary forces shape past and contemporary populations' genetic structure, and 
identify those populations that may be most at risk under future climate change. 
Here, we used genotyping by sequencing to generate over 11,000 high-quality vari-
ants from Platycladus orientalis range-wide collection to evaluate its diversity and 
to predict genetic offset under future climate scenarios. Platycladus orientalis is a 
widespread conifer in China with significant ecological, timber, and medicinal values. 
We found population structure and evidences of isolation by environment, indicative 
of adaptation to local conditions. Gradient forest modeling identified temperature-
related variables as the most important environmental factors influencing genetic 
variation and predicted areas with higher risk under future climate change. This study 
provides an important reference for forest resource management and conservation 
for P. orientalis.
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1  | INTRODUC TION

The observed rapid pace of climate change is expected to profoundly 
influence species distribution and diversity, and is considered as one 
of the significant causes of biodiversity decline and/or loss in the next 
century (Dawson, Jackson, House, Prentice, & Mace, 2011; Pacifici 
et al., 2015; Warren et al., 2013). Evidence of climate-induced local 
extinction is widespread among plant and animal species (Urban, 
2015; Wiens, 2016). Forest trees constitute a significant group of 
organisms in their combined ecological and economic importance. 
Understanding how forest trees respond to climate change aids ef-
forts to predict species range shift and informs management issues 
related to conservation and reforestation.

Long-lived tree species with wide distribution ranges often show 
clear adaptation to local environments. Local adaptation in which 
local genotypes have a fitness advantage than foreign genotypes is 
well known among tree species (Aitken & Bemmels, 2016; Hereford, 
2009). Rapid climate change can break this genetic–environmental 
association much faster than trees' ability to adapt in situ or migrate 
(Aitken, Yeaman, Holliday, Wang, & Curtis-McLane, 2008; Jump & 
Penuelas, 2005), thus creating a mismatch between genetic adapta-
tion to altered environmental conditions. In addition, human activ-
ities lead to population fragmentation, thereby reducing gene flow, 
which undoubtedly increases the risk of maladjustment of local pop-
ulations when environment changes.

The development of landscape genomics is providing unprece-
dented insights into the evolutionary processes and the molecular 
basis of adaptation, aiding in understanding how species and pop-
ulations respond to climate change challenges (McKinney, Larson, 
Seeb, & Seeb, 2017). Landscape genomics, integrating geographic 
and environmental information, uses a large number of genetic 
loci to understand the extent to which climate has shaped genetic 
variation in the past (Sork et al., 2013). It could further be used to 
quantify modern patterns of interaction between genetic variation 
and climate conditions, and predict vulnerable populations under 
future conditions when combined with methods for exploring non-
linear genotype–environment relationships in multivariate space 
(Fitzpatrick & Keller, 2015; Holliday et al., 2017). Gradient forest 
(GF) is a community-level transfer function based on machine-learn-
ing regression tree approach known as random forests (Ellis, Smith, 
& Pitcher, 2012). This method is now extended to analyze and map 
genomic variation associated with environmental tolerance across 
space and times (Fitzpatrick & Keller, 2015). GF modeling can also be 
used to calculate the difference between current and future geno-
type–environment relationships and forecast the geographic regions 
of high genetic mismatch under future climates if migration and de 
novo mutations cannot compensate for the required diversity. Until 
now, this approach has not been widely implemented in forest tree 
population studies.

Platycladus orientalis is a member of the family Cupressaceae 
and one of the dominant coniferous tree species in northern China. 
The natural range of P. orientalis covers northern and northwestern 
China, Korea, and Russian's Far East, and it is globally introduced to 

Africa, Asia, Australia, Europe, North America, and South America 
(Li, Du, & Wen, 2016). Due to the diverse geographic regions it occu-
pies, the species exhibits large amounts of morphological and phys-
iological variation (Mao et al., 2010; Shi, Zheng, & Qu, 1992; Wu, 
1986). However, it is not clear whether these variations are reflec-
tive of genetic diversity and what evolutionary forces have driven 
the diversity.

In this study, we sampled the Chinese range of P. orientalis and 
surveyed their genetic variation using genotyping by sequenc-
ing (GBS). For large conifer genomes, GBS has become a practical 
method for generating genome-wide variant data for population ge-
netic studies (Chen, Mitchell, Elshire, Buckler, & El-Kassaby, 2013; 
Pan et al., 2015; Parchman, Jahner, Uckele, Galland, & Eckert, 2018; 
Xia et al., 2018). Our objectives were (a) to assess the species' ge-
netic diversity and population structure, (b) to evaluate the impact of 
environment and geography on genetic variation, and (c) to predict 
genetic offset of regional populations in relation to climate change. 
These investigations offer insight on environmental factors that 
have influenced the distribution of genetic diversity in this major 
conifer species, and provide basic information for forest managers 
to address management and conservation strategies under future 
climatic conditions.

2  | MATERIAL S AND METHODS

2.1 | Sampling, GBS library preparation, and 
sequencing

During the 1980s–1990s, bulked seeds from 21 P. orientalis popula-
tions distributed throughout China and one Thuja koraiensis popula-
tion (LYL) from Heilongjiang Province, China, were collected (Table 1, 
Figure 1) and stored at –20℃ for further use. Populations from the 
south of the Yangtze River (CL, LP, NP) are in small, sporadically dis-
tributed patches and appear to be introduced (Dong, Chen, Zhang, 
Li, & Kong, 1990). Thuja koraiensis is morphologically similar to P. ori-
entalis and has an adjacent distribution to the northeast of P. orienta-
lis. We included T. koraiensis to test whether it can be distinguished 
by GBS and whether there is gene flow between these two species. 
From each population, 8–17 seeds were treated with 30% hydrogen 
peroxide for 1 hr and immersed in water overnight, and then ger-
minated at 25℃ on moist filter paper (Table 1). DNA was extracted 
from seedlings using the cetyltrimethylammonium bromide (CTAB) 
method (Doyle & Doyle, 1987).

We prepared a GBS library for the 300 samples using a PstI 
high-fidelity restriction enzyme (New England Biolabs, MA, USA), 
following a previously established protocol (Pan et al., 2015) with 
minor modification. In brief, restriction enzyme digestion and 
adapter (with individual barcode) ligation were carried out simulta-
neously on 200 ng DNA from each sample. Then, the digested and li-
gated DNA were pooled, purified, and PCR-amplified. Fragment size 
of 330–550 bp was selected and purified. Paired-end sequencing 
(2 × 125 bp) was performed on an Illumina HiSeq2500.
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2.2 | Processing of Illumina data

Adapter sequences and low-quality bases (base quality <20) from 
the tail of each read were removed using Trimmomatic v0.36 (Bolger, 
Lohse, & Usadel, 2014). Then, variants were built de novo from the 
short reads using Stacks pipeline (Catchen, Amores, Hohenlohe, 
Cresko, & Postlethwait, 2011). Briefly, the cleaned paired reads 
were demultiplexed and trimmed to 99 bp in length using the “pro-
cess_radtags” module. The matching reads were grouped into stacks 
and built loci de novo in each sample with “ustacks” modules. The 
minimum number of reads to create a stack (-m flag) was set at 3 
following the strategy proposed recently (Paris, Stevens, & Catchen, 
2017; Rochette & Catchen, 2017) with “-H” flag to disable haplo-
types calling from secondary reads, and the maximum distance (in 
nucleotides) allowed between stacks to define loci (-M flag) was set 
at 4. After that, loci were matched up according to sequence similar-
ity to create a catalog of all loci (i.e., a set of consensus loci) across 
the samples using “cstacks”; the distance allowed between sample 
loci (-n flag) was set to 5. The number of polymorphic loci shared 
by 80% of samples was used to determine the values of parameters 
M and n for “ustacks” and “cstacks” modules (Figure S1; Paris et al., 
2017; Rochette & Catchen, 2017). The settings of these parameters 
were used to control the number of SNPs recovered, measures of 
genetic diversity estimates, and genetic inference for downstream 

applications (Mastretta-Yanes et al., 2015; Shafer et al., 2017). Then, 
the “sstacks,” “tsv2bam,” “gstacks,” and “populations” modules were 
implemented with default parameters to match each sample against 
the catalog and perform variants calling.

Subsequently, the variant dataset was further filtered using the 
“populations” module in Stacks and VCFtools (v0.1.13) (Danecek et 
al., 2011). Potential homeology was excluded by removing markers 
showing heterozygosity >0.70. SNPs with more than 50% of missing 
data were removed. We further filtered the dataset with a minor 
allele frequency (MAF) <0.05 and only kept biallelic SNPs.

2.3 | Population genetic analyses

The population structure was investigated using the model-based 
evolutionary clustering approaches as implemented in ADMIXTURE 
v1.30 (Alexander & Lange, 2011; Alexander, Novembre, & Lange, 
2009) and discriminant analysis of principal components (DAPC) 
in R package adegenet (Jombart, 2008). Only one SNP from each 
GBS fragment was kept in ADMIXTURE analysis (3,911 SNPs). 
ADMIXTURE was run under K ranged from 1 to 10 and was repeated 
10 times for each K with different random seeds. The most appro-
priate K value was selected after performing the 10-fold cross-vali-
dation procedure, whereby the best K exhibits low cross-validation 

TA B L E  1   Geographic locations, sample size (N), average heterozygosity per locus (Hobs), average nucleotide diversity (π), and Wright's 
inbreeding coefficient (FIS) of the 21 Platycladus orientalis populations and one Thuja koraiensis population

Species Cluster Population N (sampled) N (valid) Longitude (°E) Latitude (°N) Hobs π FIS

T. koraiensis  Laoyeling (LYL) 17 13 131.04 43.55 0.22 0.0024 0.05

P. orientalis A Lingyuan (LY) 17 14 119.35 41.23 0.17 0.0025 0.18

 A Yikezhao (YKZ) 15 13 110.80 39.60 0.20 0.0027 0.16

 A Heshui (HS) 10 10 108.68 36.12 0.24 0.0028 0.09

 A Huangling (HL) 11 11 109.27 35.58 0.26 0.0028 0.05

 A Pinglu (PL) 11 9 111.22 34.84 0.22 0.0029 0.18

 A Liangdang (LD) 15 14 106.30 33.58 0.21 0.0027 0.17

 B Miyun (MY) 16 14 116.83 40.38 0.22 0.0026 0.10

 B Jiaocheng (JC) 17 17 112.17 37.56 0.20 0.0028 0.20

 B Jincheng (JCH) 17 15 113.12 35.58 0.24 0.0028 0.11

 B Changqing (CQ) 14 14 116.73 36.60 0.22 0.0029 0.17

 B Zibo (ZB) 17 17 117.85 36.50 0.24 0.0028 0.11

 B Huixian (HX) 17 14 113.70 35.40 0.17 0.0023 0.14

 B Jiaxian (JX) 10 10 113.30 33.90 0.22 0.0025 0.06

 C Queshan (QS) 14 14 114.03 32.70 0.20 0.0026 0.15

 C Luonan (LN) 15 12 110.07 34.10 0.20 0.0028 0.19

 C Jishan (JS) 13 11 110.95 35.58 0.25 0.0027 0.05

 C Nanzheng (NZ) 10 6 106.94 33.07 0.20 0.0025 0.09

 C Cili (CL) 15 8 111.15 29.44 0.16 0.0021 0.09

 C Liping (LP) 9 5 109.15 26.23 0.21 0.0024 0.04

 C Nanping (NP) 12 9 118.17 26.65 0.19 0.0024 0.11

 Not 
defined

Baotou (BT) 8 4 111.42 41.33 0.22 0.0026 0.06
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error (CV error) opposed to others. We used the CLUMPAK (Cluster 
Markov Packager Across K) web server to align and visualize the 
bar graphs (Kopelman, Mayzel, Jakobsson, Rosenberg, & Mayrose, 
2015). DAPC with prior clusters defined by ADMIXTURE was car-
ried out using the same set of SNPs.

To avoid overestimating the number of potential clusters caused 
by the presence of isolation by distance (IBD), as is often found in 
continuous populations, we further used conStruct (Bradburd, Coop, 
& Ralph, 2018) to identify structure in a spatially aware context. con-
Struct allows for explicit test of discrete versus continuous spatial 
patterns by estimating the ancestral components of each population 
and the rate at which relatedness decays with distance. We tested 
both spatial and non-spatial models using loci of missing rate <30% 
(1,546 SNPs) for a range of K = 1–6, with 10 repetitions per each K 
value and 50,000 iterations per repetition. We performed 10-fold 
cross-validation to choose the best-fit number of clusters (K). For 
each best fit K, we conducted three independent runs to evaluate 
the convergence.

Population differentiation (FST) (Weir & Cockerham, 1984) be-
tween clusters was calculated using the R package hierfstat (Goudet, 

2005). Population genetic statistics, including nucleotide diversity 
per base pair (π), Wright's inbreeding coefficient (FIS), and observed 
heterozygosity (Hobs), were calculated using the “populations” mod-
ule in Stacks.

2.4 | Environmental variables and their associations 
with genetic variation

For each sampling location, we used a high-resolution climate data-
base, climateAP (Wang, Wang, Innes, Seely, & Chen, 2017), to gener-
ate environmental data for China. We chose 49 variables with known 
impacts on plant survival and development, including 14 annual and 
35 seasonal environmental variables (Table S1). We calibrated and 
downscaled climatic projections representing two different future 
scenarios RCP4.5 and RCP8.5, reflecting moderate and extreme 
conditions, respectively, for 2055 and 2085.

We performed GF analyses to identify the environmental vari-
ables that best explained the distribution of genetic diversity using 
the R package gradientForest (Ellis et al., 2012). To ameliorate some 

F I G U R E  1   Population structure and gene–environment associations in Platycladus orientalis. (a) Pie chart shows the ancestral 
composition of each population with K = 4 inferred from ADMIXTURE. (b) DAPC of the 21 populations assigned to four clusters (a, b, c, 
and Thuja koraiensis as in panel a). (c) Genetic structure and admixture inferred with spatial conStruct (K = 2). (d) Gradient forest mapped 
genetic–environmental associations across the distribution area. Colors represent the PCA-summarized gradients in genomic turnover. The 
first three PCs were each assigned to a RGB color, red, green, and blue. Similar colors in the sampled space correspond to similar expected 
genetic composition associated with climate

(a)

(b) (d)

(c)
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     |  669JIA et Al.

of the problems that arise due to linkage among markers, we kept 
only one SNP per GBS fragment for GF analyses. Any SNP that was 
polymorphic in fewer than 5 of the 17 populations was removed to 
ensure attaining robust regression. We used 2,000 regression trees 
per SNP to fit GF model while keeping all the parameters set at de-
fault values.

At first, all the 49 environmental variables were included in GF 
models. After evaluating the ranked importance and Pearson pair-
wise correlations among these variables, 10 variables (eref, dd_0_djf, 

ext, dd5_djf, ppt_djf, pas_djf, ppt_son, ppt_jja, eref_jja, and cmd) 
with absolute value of Pearson correlation coefficient (r) ≤.8 were 
retained for the following analysis (Figure 2; Table S1). The 10 envi-
ronmental variables and the unlinked SNPs were used to build the 
final GF model, which was used to predict the current genomic com-
position of each grid point across the range of P. orientalis as defined 
by Hu, Jin, Wang, Mao, and Li (2015). The resulting multidimensional 
genomic patterns were summarized using principal component anal-
ysis (PCA) (Ellis et al., 2012). The first three PCs were each assigned 
to a RGB color, red, green, and blue. Similar colors in the sampled 
space correspond to similar expected genetic composition. This al-
lows us to visualize the different environmental adaptations within 
the distribution of P. orientalis, where similar colors represent similar 
allele frequencies.

2.5 | Isolation by distance (IBD) and isolation by 
environment (IBE)

To investigate the role of geographic and environmental factors in 
shaping the spatial genetic differentiation, we calculated: (a) iso-
lation by distance (IBD), (b) isolation by environment (IBE), and (c) 
the correlation between environmental and geographic distance. 
Pairwise FST/(1 − FST) (Rousset, 1997) was calculated among popula-
tions using the R package hierfstat (Goudet, 2005). Mantel test was 
used to assess associations between linearized FST/(1 − FST) and geo-
graphic distance and environmental distance with significance de-
termined using 999 permutations in the R package vegan (Oksanen 
et al., 2018). The 10 selected climate variables were used to calculate 
environmental distances by first scaling and centering the variables 
to account for differences in magnitude, then calculating pairwise 
Euclidean differences between sites.

2.6 | Outlier detection

We applied three methods to detect outlier SNPs, BayeScan 
(Beaumont & Balding, 2004), Pcadapt (Luu, Bazin, & Blum, 2017), 
and Bayenv2 (Günther & Coop, 2013). For BayeScan, we designated 
30 prior odds for the neutral model and included 100 pilot runs, fol-
lowed by 100,000 iterations with a burn-in length of 50,000 itera-
tions (Lotterhos & Whitlock, 2014). To decrease false positives due 
to multiple testing, we applied the false discovery rate (FDR) crite-
rion (0.01). For Pcadapt, the K = 3 was selected based on scree plot 
(Figure S2). Outlier SNPs were identified under FDR of 0.01 using 
q-value package in R (Storey, Bass, Dabney, & Robinson, 2015). For 
Bayenv2, we first created a neutral SNP set by excluding any out-
lier SNPs detected by BayeScan and Pcadapt, and retaining one SNP 
per GBS fragment. The covariance matrix was estimated using these 
SNPs with 100,000 iterations. We compared three independent 
runs of covariance matrices with different random seeds to ensure 
convergence. The same 10 environmental variables were used to 
calculated environmental correlations by averaging five independent 

F I G U R E  2   Environmental variables used in the gradient forest 
modeling. Variables were ordered by ranked importance. *Top-
ranked, uncorrelated environment variables (Pearson's |r| < .8)
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runs of Bayenv2 with 100,000 Markov chain Monte Carlo (MCMC) 
iterations with different random seeds. We considered the SNPs in 
the top 1% of Bayes factor (BF) values (BF > 3) and top 5% of the 
absolute value of Spearman rank correlation coefficients (ρ) as sig-
nificant putative adaptive loci.

2.7 | Redundancy analysis

To estimate the degree to which genomic variation is influenced by en-
vironmental or geographic variables, we performed a series of redun-
dancy analyses (RDAs) in the R package vegan (Oksanen et al., 2018). 
RDA involves a multiple linear regression followed by a PCA on the 
matrix of regression-fitted values. A dependent matrix of minor allele 
frequencies for each population, and two independent matrices of en-
vironmental variables and geographic variables were included. For the 
geographic matrix, we used Moran's eigenvector map (MEM) to calcu-
late the spatial weighted matrix of the sampling sites using the R pack-
age adespatial (Dray et al., 2018). Only the top three eigenfunctions 
(MEM1, MEM2, and MEM3) representing significant positive spatial 
correlation were retained in the RDA following the recommendation 
of Borcard, Gillet, and Legendre (2011). For environmental matrix, 
forward selection was used to reduce the number of variables in the 
model with a stringent alpha value of 0.05. After that, to further avoid 
high collinearity, we excluded those with a variance inflation factor 
(VIF) over 10 (Borcard et al., 2011). Finally, we reserved two environ-
mental variables, including Hargreaves reference evaporation (eref) 
and degree-days above 5°C in December, January, and February (dd5_
djf) to explain population variation using the rda function in the vegan 
package (Oksanen et al., 2018). The ANOVA.cca function was used to 
test the significance of the partitioning with 999 permutations.

2.8 | Genetic offset under future climates

To identify the spatial regions where genetic–environmental rela-
tionships will be most likely disrupted by climate change, we first 
used the current GF model to predict genetic compositions under 
RCP4.5 and RCP8.5 for the years 2055 and 2085. Then, we calcu-
lated the Euclidean distances between the current and predicted fu-
ture genomic composition to represent the genetic offset between 
current and future climates across the landscape (Bay et al., 2018; 
Fitzpatrick & Keller, 2015). We visualized the genetic offset for dif-
ferent climate scenarios in geographic space to show the spatial dis-
tribution of population-level vulnerability to climate change.

3  | RESULTS

3.1 | Sequence data

Our GBS generated 520 million paired-end reads from 300 individu-
als, of which 472 million reads (90.7%) passed initial quality filters 

(Table S2). A total of 46 individuals with low coverage (<0.1 million 
reads) were discarded, leaving 254 valid samples in this study, with 
4–17 individuals per population across the 22 sampled populations 
(Table 1). Under our parameter settings, Stacks initially recovered 
704,684 SNPs, and after filtering for MAF (≥0.05), missing rate 
(≤0.5), and heterozygosity (≤0.7), the number of SNPs was reduced 
to 11,049. We further created a set of unlinked SNPs by keeping only 
one SNP per GBS fragment; this set consisted of 3,911 SNPs.

3.2 | Population genetic structure

Using the unlinked SNPs (3,911), ADMIXTURE identified K = 4 as the 
most likely number of evolutionary clusters among the 22 popula-
tions sampled, including one population of T. koraiensis (Figure S3A). 
Under K = 3, the 22 populations were divided into a T. koraiensis 
cluster (LYL), a cluster A with 6 populations (LY, YKZ, HS, HL, PL, 
and LD), and a large third cluster with all the remaining populations 
(Figure S3B). Under K = 4, the T. koraiensis and the A clusters were 
maintained unchanged, but the third cluster was split into B (MY, 
JC, JCH, CQ, ZB, HX, JX) and C (QS, LN, JS, NZ, CL, LP, NP) clusters 
(Figure 1a; Figure S3B). One population (BT) was removed from fur-
ther analyses due to its small valid sample size (n = 4) and being a 
likely introduced population. DAPC showed clear separation among 
the clusters identified by ADMIXTURE (Figure 1b). The first discrimi-
nant axis (DAPC 1) revealed a separation of P. orientalis populations, 
while the second (DAPC 2) highlighted the divergence between T. 
koraiensis and P. orientalis.

conStruct cross-validations showed that the spatial model was 
marginally superior to non-spatial model as the predictive accu-
racy of non-spatial model continued to improve slightly as sub-
sequent clusters were added up to K = 6 (Figure S4), indicative of 
overestimating the number of potential clusters. For the spatial 
model, the predictive accuracy was highest at K = 3, but addi-
tional spatial layer beyond K = 2 contributed very little to total 
covariance (Figure S4). Thus, the spatial model at K = 2 sufficiently 
described the population structure, and the clustering patterns of 
spatial and non-spatial models were very similar, indicating the 
contribution of IBD to the population structure was small. The 
decay of genetic relatedness against the geographic distance also 
supported weak IBD within each ancestral layer (αD ≈ 0) (Figure 
S5). The pattern of admixture along the latitudinal gradient re-
vealed by conStruct was similar to the results of ADMIXTURE 
(Figure 1a,c; Figure S4).

Genetic differentiation (FST) among clusters (A, B, C, and T. ko-
raiensis) was significant when using unlinked 3,911 SNPs, with FST 
values ranged from 0.030 to 0.140 (Table S3). The differentiation 
between T. koraiensis and P. orientalis (FST = 0.105–0.140) was no-
ticeably higher than within P. orientalis (0.030–0.069). On all 11,049 
SNPs, FST values changed little (Table S3). The average genetic di-
versity (π) in P. orientalis populations ranged from 0.0021 to 0.0029 
when considering all 11,049 SNPs, and the value in T. koraiensis was 
similar (0.0024, Table 1).
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3.3 | Environmental associations with 
genetic variation

Three small, sporadically distributed, and potentially introduced P. 
orientalis populations located south of the Yangtze River (CL, LP, NP) 
and the T. koraiensis population (LYL) were removed from this analy-
sis, leaving 17 populations for all following analyses. We performed 
GF analyses to test whether a subset of genomic variation can be 
explained by environmental effects and to visualize climate-associ-
ated genetic variation across the species range. Mapping of genetic 
variation across environmental space revealed significant differ-
ences of genetic composition along the latitudinal and longitudinal 
axes of P. orientalis range (Figure 1d). GF identified Hargreaves refer-
ence evaporation (eref) as the most important predictor among en-
vironmental variables considered, followed by autumn Hargreaves 
reference evaporation (eref_son) and autumn mean maximum tem-
perature (tmax_son) (Figure 2). The top nine environmental factors 
(eref, eref_son, tmax_son, eref_mam, dd_0_djf, ext, tmax_djf, mwmt, 
and tmax_jja) were all related to temperature, suggesting tempera-
ture was a key factor influencing distribution of P. orientalis (Figure 2).

3.4 | Partitioning genomic variation to IBD and IBE

Gene flow patterns may align with environmental or geographic 
distances, so we tested isolation by distance and environment. A 
significant correlation between pairwise FST(1 − FST) and Euclidean 
geographic distance (Mantel r = .3573, p = .016; Figure 3a) was de-
tected by the Mantel test, indicating a significant pattern of isolation 
by distance (IBD). We also identified a significant pattern of isolation 
by environment (IBE) based on distance derived from environmental 
deviation (Mantel r = .3544, p = .009; Figure 3b), and the level of cor-
relation was similar to IBD. However, the autocorrelation between 
environmental and geographic distances was also strong (Mantel 
r = .4079, p = .004; Figure 3c). We therefore applied RDA to dissect 
the individual roles of IBD and IBE and their confounding effect on 
genomic differentiation.

From the full set of SNPs (11,049), we detected 579 (5.24%) out-
lier SNPs by the three detection methods used. BayeScan, Pcadapt, 
and Bayenv2 identified 214 (1.94%), 211 (1.91%), and 228 (2.06%) 
significant outlier SNPs, respectively (Figure S6). We performed 
RDA on outlier SNPs and the full set of SNPs. RDA results showed 
that environmental and geographic variables explained small but sig-
nificant proportions of genetic differentiation on the 11,049 SNPs, 
as measured by adjusted R2 (6.3%–10.7%, p < .05; “combined frac-
tions,” Table 2). To further unlock the contribution between geogra-
phy and environment, we performed partial RDA. A total of 13.1% of 
variation could be jointly explained by environment and geography 
(“total explained,” Table 2). Environment and geography each exclu-
sively explained 6.8% (p < .05) and 2.4% (p > .05) of the variation, 
respectively.

Outlier SNPs may be constituted by environment or geography 
or both. We found 2%–19.3% of the variation could be explained 

by both factors jointly (Table 2; total explained). Variations in the 
Bayenv2 outliers showed bigger impact of environments than in the 
Pcadapt and BayeScan outliers. In the corrected RDA, environment 
exclusively explained 8.1% (p < .05) of the variation in the Bayenv2 
outlier SNPs, but the effect of geography was insignificant (3.6%; 
p > .05), while the corresponding values were −0.2% to 0.5% (p > .05) 
and 1.8%–2.0% (p > .05) for the Pcadapt and BayeScan outliers 
(Table 2).

3.5 | Genetic offset to climate change

GF modeling predicted regions with high genetic offset in the south-
ern and northern margins of the P. orientalis distribution under 
future climate, with the southern range showing higher genetic off-
set, especially in the northeastern Sichuan Province (bounded by 
103°E–108°E, 30°N–32°N; Figure 4) under RCP4.5 by 2055. As ex-
pected, under more severe climate change (RCP8.5) and longer time 
perspective (2085), the range and degree of genetic offset increased 
(Figure 4).

4  | DISCUSSION

This population genomics study confirmed the genetic divergence 
between P. orientalis and T. koraiensis, identified population structure 
in P. orientalis, and revealed evidence of adaptive genetic variation 
through a combined FST outlier, genetic–environmental association, 
and RDA approach. Based on current genetic–environmental asso-
ciations and machine-learning-based modeling, we identified regions 
with high genetic offset in P. orientalis distribution range where ge-
netic–environmental relationships are most likely to be disrupted 
under future climate conditions. Our analyses provide the first in-
sight on diversity and evolutionary forces operating in this species 
and assist genetic conservation and reforestation operations.

4.1 | Population structure

Strong genetic differentiation between P. orientalis and T. koraien-
sis populations supports their divergence as two different species. 
The taxonomic status of the two species is debated, as P. orientalis 
is also named as T. orientalis (Durak et al., 2019; Xie, Dancik, & Yeh, 
1992). The intermediate positions of some individuals of T. koraiensis 
suggest a probability of gene exchange between the two species. 
Mountains running through northeastern China, such as Greater 
Khingan, Lesser Khingan, and Baekdu Mountain, could provide barri-
ers limiting pollen flow and form geographic isolation between these 
two species. Further validation of reproductive barrier between 
them would require crossing experiment and genetic testing.

Within P. orientalis, ADMIXTURE and conStruct indicated 2–3 
genetic clusters with prominent admixture across regions. The spa-
tial clustering identified by ADMIXTURE and conStruct was largely 
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congruent with each other showing a clear south–north transition 
(Figure 1). conStruct gave little support to an overall pattern of IBD 
in the sampled populations, as also shown by geographically adja-
cent populations were not always more similar than geographically 
distant population, such as LD and NZ, MY, and LY. These results 
suggest that some populations of P. orientalis may have been in 
isolation in the past, likely resulted from historical processes (i.e., 
geographic isolation or refugia). Geological events and subsequent 
climatic changes during Pliocene–Pleistocene in northern and west-
ern China were identified as major forces that have shaped the dis-
tribution and genetic differentiation of forest species in northern 
China (Xia et al., 2018). In addition, human activities also contributed 
to the fragmentation of P. orientalis. It is suggested that P. orientalis 
became fragmented into relatively small and isolated populations 
since at least 1,500 years ago (Xie et al., 1992). A more thorough 

sampling covering all isolated populations would provide a more de-
tailed demographic history of the species.

4.2 | Environmental adaptation

Environment has been widely reported as a strong selective pres-
sure on natural populations (Joshi et al., 2001; Mosca et al., 2012). 
Testing for IBD and IBE in P. orientalis using Mantel test indicated 
that geographic and environmental distances were almost equally 
important to the observed genetic differences. The relationship 
between geographic and environmental distances was highly cor-
related, which made it difficult to correctly parse out the factor that 
plays the key role in shaping the genetic variation. We thus further 
applied RDA to subdivide the genetic variation to environment and 

F I G U R E  3   Isolation by distance and environment using Mantel test. (a) Pairwise genetic distance FST/(1 − FST) is significantly associated 
with geographic distance and (b) environmental distance. (c) Geographic distance is significantly correlated with environmental distance

0 5 10 15 20

0.
05

0.
10

0.
15

0.
20

0.
25

Geographical distance (100 km)

(a)

1 2 3 4 5 6 7

0.
05

0.
10

0.
15

0.
20

0.
25

Environmental distance

(b)

0 5 10 15 20

1
2

3
4

5
6

7
En

vi
ro

nm
en

ta
l d

is
ta

nc
e

Geographical distance (100 km)

(c)

Mantel r = .3544
p = .009

Mantel r = .3573
p = .016

Mantel r = .4079
p = .004

FS
T/

(1
−F

ST
)

F S
T/

(1
−F

ST
)

 
All SNPs (11,049 
SNPs)

Outliers

Bayenv2 (228 
SNPs)

Pcadapt (211 
SNPs)

BayeScan 
(214 SNPs)

Combined fractions

F ~ env. 0.107** 0.158** 0.053ns 0.002ns

F ~ geo. 0.063** 0.111** 0.068ns 0.022ns

Individual fractions

F ~ env.|geo. 0.068* 0.081* 0.005ns −0.002ns

F ~ geo.|env. 0.024ns 0.036ns 0.020ns 0.018ns

F ~ env. + geo. 0.039 0.077 0.048 0.004

Total explained 0.131 0.193 0.073 0.020

Total unexplained 0.869 0.807 0.927 0.980

Total 1.000 1.000 1.000 1.000

Note: F: Dependent matrix of population allele frequencies; RDA tests are in the form of 
F ~ independent matrices|covariate matrixes. env.: environment (two variables); geo.: geography 
(three MEM variables). Total explained: total adjusted R2 of individual fractions. Significance of 
confounded fractions (env. + geo.) between environment and geography was not tested.
Abbreviation: ns, not significant.
*p < .05; **p < .01. 

TA B L E  2   Redundancy analyses (RDAs) 
to partition among-population genetic 
variation in Platycladus orientalis into 
environment (env), geography (geo), and 
their combined effects, shown in the table 
as measured by adjusted R2
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geography. On all SNPs, 13.1% of the variation could be jointly ex-
plained by the environment and geography, with environment ex-
clusively contributing 6.8%, leaving 86.9% of the genetic variation 
unexplained. For the outlier SNPs, especially the Bayenv2 outliers, 
19.3% of the variation could be explained by both environment and 
geography, of which a significant 8.1% of variation was attributed to 
environment, while geography was insignificant. These results sug-
gest that environment was more important than geography in the 
population differentiation of P. orientalis. The genomic signature of 
IBE in P. orientalis was similar to that of Pinus tabuliformis in northern 
China (Xia et al., 2018). This signature of IBE can be produced by ge-
netic adaptation to local environments (Nachman & Payseur, 2012; 
Wang & Bradburd, 2014).

Local adaptation studies on climate change contribute to un-
derstanding the ability of populations to sustain or adapt to rapid 
climate change (Fournier-Level et al., 2011). Adaptive variation is 
partially structured by environmental factors, which may be mostly 
driven by temperature gradients for P. orientalis (Fu & Shen, 1989). 
GF analyses indicated that temperature was by far the most im-
portant variable associated with genetic variation. Temperature 
is a key factor influencing growth and phenology of various tree 
species, including P. orientalis (Fu & Shen, 1989). Temperature in-
fluences the growth of plants by affecting the metabolic processes 
such as photosynthesis, respiration, and transpiration, as well as 

the metabolic processes that affect the synthesis and transpor-
tation of organic matter (Wahid, Gelani, Ashraf, & Foolad, 2007). 
Additionally, ambient temperature can directly affect soil tempera-
ture, thus affecting the absorption and transport of water and nu-
trients. Low temperature (dd_0_djf) seemed to be an indispensable 
factor, which is not only a limiting factor for the survival (Dong et 
al., 1990) but also a critical factor for volume growth in P. orienta-
lis (Chen, Yang, Li, Xu, & Wang, 2012). However, the physiological 
mechanism of P. orientalis responding to low temperature is not yet 
understood. Dissection of this adaptive mechanism should be the 
objective of future studies.

Water availability is commonly recognized as another critical fac-
tor delimitating tree species' distribution in northern China (Mao & 
Wang, 2011; Xia et al., 2018). However, for P. orientalis only one of 
the top ten-ranked environmental variables is in the water regime 
indicating that precipitation has less impact on genetic adaptation 
than temperature. This is likely due to the strong drought tolerance 
of P. orientalis, as it can survive under annual precipitation of less 
than 200 mm and soil moisture content below 5% (Dong et al., 1990). 
Furthermore, seasonal precipitation (ppt_jja, ppt_son, ppt_man, 
ppt_djf) appeared to be more important than annual mean precipita-
tion (map, Figure 2), suggesting that the time of precipitation might 
have a greater impact on phenological and periodic events such as 
flowering and growth than annual variables.

F I G U R E  4   Predicted genetic offset across Platycladus orientalis distribution in the years 2055 and 2085 under scenario RCP4.5 and 
RCP8.5. Red and blue represent high and low genetic offset, respectively
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4.3 | Genetic offset in future climates

Based on the current genetic–environmental associations, we at-
tempted to assess the potential genetic offset in P. orientalis under 
future conditions using GF modeling. The same strategy has been 
applied to a variety of species (Bay et al., 2018; Fitzpatrick & Keller, 
2015; Maier, 2018). Using this method, we gain insight into the po-
tential risk of a species' persistence under climate change.

Our GF analyses suggested that P. orientalis would be less af-
fected in the northwestern Loess Plateau and most of northern 
China, while relatively high genetic offset was predicted in the 
northern and southern margins. These high-risk regions would need 
to adapt fast, either actively or passively, to keep pace with climate 
change; otherwise, populations in these regions may decline. Similar 
to other conifers, P. orientalis has a relatively long lifecycle with long 
generation intervals, in which the rate of emergence and spread of 
novel adaptive alleles in populations through de novo mutations are 
likely to be too slow to respond to rapid future climate changes.

The prediction accuracy of the GF models has been verified on 
bird populations (Bay et al., 2018; Ruegg et al., 2018). However, true 
evolutionary responses in long-lived conifers are more complex to 
predict than GF models and may involve interactions between se-
lection and the distribution of fitness effects of minor alleles and 
new mutations. Minor alleles were excluded from many analyses in 
this study due to consideration of genotyping errors in GBS proce-
dure, for which we applied stringent filtering including MAF. Rare 
alleles may contribute to adaptation, and their roles should be better 
investigated using other genotyping methods (e.g., resequencing). 
Additionally, effective population size, the level of standing genetic 
variation, and the stage of population equilibrium in terms of local 
adaptation can influence the accuracy and power of GF projection 
and interpretation. Future work is needed to combine landscape ge-
nomics and empirical data on phenotypic variation of the P. orientalis 
populations to validate and adjust model predictions.

4.4 | Management strategy

Platycladus orientalis is one of the most widely distributed coniferous 
trees in China (Dong et al., 1990) with a long life span, strong adapt-
ability, and wide utilization. It is of great significance for accelerat-
ing the greening of China and improving the ecological environment. 
Due to the drought resistance, this species plays an important role 
in China's landscape, especially in the northwestern Loess Plateau 
and the establishment of protection shelterbelts in northern China 
(Dong et al., 1990). In the present study, we identified the genetic 
structure and differentiation within P. orientalis range, which offers 
an opportunity for optimal seed zone delineation, allocation of seed 
sources, seed movement for reforestation, and genetic conserva-
tion. For example, traditional seed transfer guidelines are based on 
provenance trials and climate models to select the range of seed 
transplants. However, establishment and maintenance of prove-
nance trials are expensive and time-consuming, resulting in limited 

information available, which makes it challenging to develop either 
population response functions or transfer functions (Mátyás, 1994). 
The knowledge generated from the present study could serve as 
complementary or an alternative to traditional approaches.

Considering that future climate may dramatically change in 
certain parts of the species' range, we propose adopting assisted 
gene flow to increase genetic diversity and adaptation to the an-
ticipated climate changes. Assisted gene flow is a managed migra-
tion of individuals or gametes between populations within species 
range, which may be effective in accelerating adaptation to fu-
ture climate (Aitken & Whitlock, 2013). In the areas of predicted 
high genetic offset, we should consider the use of a composite 
provenance that mixes native with selected non-native seedlots 
to increase diversity and resilience. The main genetic clusters de-
tected in our study were broadly distributed, encompassing large 
variations in growth, suggesting phenotypic variations evolve at a 
different pace. Thus, composite seed sourcing would allow faster 
climate matching without risking potential genetic mismatch. For 
example, in the north margin where the predicted genetic offset 
is high, it may be appropriate to introduce seeds from the warmer 
southern regions of the same climate zone, where the seeds may 
include pre-adapted genotypes to future climate. It must be noted 
that our prediction is based on simulation of genomic information, 
without considering the function of other potential factors such 
as phenotypic plasticity and the stage of population equilibrium 
in terms of local adaptation. It would be valuable to conduct ex-
periments on seedlings from different regions to be exposed to 
varying combinations of water and temperature to evaluate re-
sponses to environmental conditions. Such testing will help to re-
fine seeds transfer strategy and validate genetic–environmental 
interactions.
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