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The Yosemite toad (Anaxyrus [Bufo] canorus) is a federally threatened species of

meadow-specializing amphibian endemic to the high-elevation Sierra Nevada Mountains

of California. The species is one of the first amphibians to undergo a large

demographic collapse that was well-documented, and is reputed to remain in low

abundance throughout its range. Recent phylogeographic work has demonstrated

that Pleistocene toad lineages diverged and then admixed to differing extents across

an elevational gradient. Although lineage divisions may have significant effects on

evolutionary trajectories over large spatial and temporal scales, present-day population

dynamics must be delineated in order to manage and conserve the species

effectively. In this study, we used a double-digest RADseq dataset to address three

primary questions: (1) Are single meadows or neighborhoods of nearby meadows

most correlated with population boundaries? (2) Does asymmetrical migration occur

among neighborhoods of nearby meadows? (3) What topographic or hydrological

variables predict such asymmetrical migration in these meadow neighborhoods?

Hierarchical STRUCTURE and AMOVA analyses suggested that populations are typically

circumscribed by a single meadow, although 84% of meadows exist in neighborhoods

of at least two meadows connected by low levels of migration, and over half

(53%) of neighborhoods examined display strong asymmetrical migration. Meadow

neighborhoods often contain one or more large and flat “hub” meadows that experience

net immigration, surrounded by smaller and topographically rugged “satellite” meadows

with net emigration. Hubs tend to contain more genetic diversity and could be

prioritized for conservation and habitat management and as potential sources for

reestablishment efforts.

Keywords: population genetics, conservation, asymmetrical migration, source-sink dynamics, isolation-by-
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INTRODUCTION

Identifying the unit at which a population is ecologically and
evolutionarily independent is important because this forms the
basis for many conservation and management actions, and for
monitoring species status. Often, two types of conservation units
are delineated: Management Units (MUs; Dizon et al., 1992;
Moritz, 1994; Palsbøll et al., 2007) and Evolutionarily Significant
Units (ESUs; Ryder, 1986; Avise, 1994;Moritz, 1994). Present-day
independence is captured by MUs, defined as demographically
independent populations with sufficiently high growth rates and
low connectivity to neighboring units (Palsbøll et al., 2007).
Conceptually, MUs should be panmictic units that can persist
in spite of low immigration rates (e.g., m < 10%) or genetic
migration rates (e.g., Nem < 1; Waples and Gaggiotti,
2006). The category of MUs is used to reflect present-day
population boundaries, and contrasts with ESUs, which are
lineages reflecting long-term or ancient isolation sufficient to
create fixed genetic or morphological differences, and perhaps
even reproductive isolation. In practice, MUs are delineated
based on genetic discontinuity or local adaptation to unique
environmental conditions (Dizon et al., 1992). Moritz (1994)
defined MUs as having significant nuclear or mitochondrial
allele frequency divergence, representing present-day genetic
or demographic cohesion. Advances in genomics have allowed
an unprecedented level of precision to delimit population
boundaries, and manage adaptive evolution (Funk et al., 2012;
Shafer et al., 2015; Peters et al., 2016; Hendricks et al., 2018;
Waples and Lindley, 2018; Waters et al., 2018).

There are still many technological challenges involved in
accurately delineating MU boundaries. For example, it has been
acknowledged that different processes underlie demographic and
genetic connectivity (Lowe and Allendorf, 2010). The number
of migrants (Nem) is solely responsible for genetic connectivity,
while demographic connectivity is influenced by m relative to
birth and death rates. Additionally, genetic connectivity may be
disproportionately impacted by rare and unobservable dispersal
events, or historical colonization followed by disequilibrium
of drift and gene flow (i.e., Slatkin’s Paradox; Slatkin, 1985,
1987; Mallet, 2001; Yu et al., 2010). Extrapolating the number
of migrants from estimates of genetic structure using FST ≈

1/(1+4Nem) is therefore non-trivial, particularly under the strict
assumptions of the islandmodel (McCauley andWhitlock, 1999).
Despite these caveats, dispersal ability is still highly correlated
with genetic structure estimates such as FST (Bohonak et al., 1998;
Bohonak, 1999), and population genomic datasets have proven
very effective compared with small or single-locus datasets
for delineating population structure. For example, population
genomic approaches have been successfully used in delineating
reproductive isolation amongst salmonids (Waples et al., 2020),
tracing complex admixture in gray wolf populations (VonHoldt
et al., 2016), and identifying invasive introgression in California
tiger salamanders (Fitzpatrick et al., 2010).

The Yosemite toad (Anaxyrus [Bufo] canorus) is a federally
threatened species of meadow-specializing amphibian that is
in need of MU delineation (U.S. Fish Wildlife Service, 2014;
Brown et al., 2015). The species is an endemic to the
Sierra Nevada Mountains of California, where it underwent

a 10-fold demographic decline at multiple localities during
the 1970s−1990s, and remains in low abundance today
(Sherman and Morton, 1993; Green and Sherman, 2001). Recent
phylogeographic work has demonstrated that Pleistocene toad
lineages diverged and then admixed to differing extents across
an elevational gradient (Maier et al., 2019); however, present-
day population boundaries have only been assessed using several
markers (Shaffer et al., 2000), and with limited spatial sampling
(Wang, 2012). In this study, we aimed to delineate population
boundaries for the Yosemite toad (Anaxyrus canorus) that can be
used for management within two national parks (Yosemite and
Kings Canyon). We used thousands of targeted nuclear markers
generated using double-digest restriction-site associated DNA
sequencing (ddRADseq), and a sampling scheme that densely
covers all known occupied locations, based on a recent 6-year
survey (Lee et al.1).

Given the previously identified pattern of isolation-by-
distance (IBD), and the statistical issues caused by stepping-stone
migration likely taken by toads between meadows (Meirmans,
2012; Perez et al., 2018), we used a hypothesis-driven approach
to identify which biologically plausible unit of population best
explains gene pool boundaries. Evidence exists for at least
three possible levels of population structure: (1) single meadows
(mean radius in Yosemite National Park: 266m), since on
average toads travel short yearly distances (275–279m), have
small home ranges (radius: 92–166m), and display high rates
of philopatry (Sherman, 1980; Martin, 2008; Liang, 2010);
(2) neighborhoods of nearby meadows, since previous survey
and census efforts have found toad meadows to be spatially
aggregated (Brown et al., 2012; Berlow et al., 2013; Matchett
et al., 2015); and (3) phylogenetically distinct lineages (Maier,
2018; Maier et al., 2019; Figures 1A,B). We used several tests to
determine which hierarchical level best matches the population
definition of Waples and Gaggiotti (2006), i.e., panmictic
units that are demographically or genetically independent from
other populations.

Next, we examined potential asymmetrical migration among
meadows. Occupancy and breeding frequency of Yosemite toads
is known to partly depend on the quality of other meadows
in a local neighborhood (Berlow et al., 2013), and a previous
microsatellite study attributed 42.6% of genetic structure between
meadows to topography and moist climate (Wang, 2012). We
therefore hypothesized that neighborhoods of nearby meadows
consist of “hubs” with high quality breeding area, minimal
topographic complexity, and high site fidelity, resulting in a
pattern of net genetic immigration from poor quality “satellite”
meadows. We avoid the terminology of “source” and “sink”
habitats, because populations may be demographically viable
and independent, yet have a net influx of migrants that makes
them sinks relative to nearby populations (i.e., “pseudo-sinks;”
Watkinson and Sutherland, 1995; Thomas et al., 1996; Kawecki
and Holt, 2002). Asymmetrical migration has been detected
in many organisms, including fish (Pinhal et al., 2020), wind
pollinated trees (Kling and Ackerly, 2021), sea stars (Iguchi

1Lee, S. L., Ostoja, S.M.,Maier, P. A.,Matchett, J. R.,McKenny, H. C., Brooks,M. L.,

et al. (in preparation). Distribution and spatio-temporal variation of Yosemite toad

populations in Sierra Nevada national parks.
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FIGURE 1 | Study area. (A) Study area in Yosemite NP (YOSE) and Kings Canyon NP (KICA), California. Top right inset shows the range of Yosemite toads in gray,

and the boundaries of YOSE and KICA in black. Green polygons are all meadows within the parks. Small black circles indicate all known Yosemite toad meadows

identified between 1915 and the present. Random noise is added to locations in order to protect the locations of this threatened species. Large circles indicate the

meadows with data available in the present study, in YOSE (n = 90) and KICA (n = 12). Colors correspond to phylogenetic lineages, shown in (B), reproduced from

Maier et al. (2019). (C) Isolation by distance result based on FST/(1− FST ) and topographically corrected distances between meadows. Mantel correlogram shows

Mantel correlation coefficients for successive 10 km distance categories. Solid lines are actual correlations, error bars represent bootstrapped confidence intervals,

and stippled lines represent permuted confidence intervals (null distribution). (D) Meadow neighborhoods defined by K = 28 (YOSE) and K = 6 (KICA) gene pools

from ADMIXTURE cross-validation. Each pie chart represents individual ancestry (i.e., q-values) from each meadow neighborhood, aggregated and displayed at the

meadow scale.

et al., 2021), and amphibians (Cortázar-Chinarro et al., 2017;
Hantzschmann et al., 2021). Such migrational dynamics may
play an important role in population persistence, as it has been
shown that demographic stability is influenced by the long-term
persistence of hubs, and continued genetic input from satellite
populations (Dias, 1996; Gaggiotti and Smouse, 1996).

Our results provide information that can be used to
plan and develop effective mitigation for habitat and climate
related disturbance. Identifying hub-satellite dynamics may

pinpoint hub meadows that will be more robust to ongoing
declines, and help inform specific conservation actions, such
as relocations.

MATERIALS AND METHODS

Spatial Extent of Sample Collection
Sites (=meadows) within Yosemite National Park (YOSE) and
Kings Canyon National Park (KICA) were chosen to maximize
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representation across all known breeding locations from a recent
6-year survey effort (Lee et al., see text footnote 1, respectively),
and overlap with previous studies (Shaffer et al., 2000; Wang,
2012; Berlow et al., 2013; Maier, 2018; Maier et al., 2019). YOSE
includes ∼33% of known Yosemite toad meadows, whereas
KICA includes the southern-most 4% of toad meadows. Tadpoles
were sampled across all available egg clutches, ponds, meadows,
and two separate years to maximize inclusion of available genetic
diversity and reduce potential bias of oversampling close relatives
relative to the total local population. A minimum of five samples
was used per meadow if additional meadows were included
within 1 km, otherwise 10 samples per meadow were used, unless
insufficient samples were available. This scheme maximized
intra- and inter-meadow sampling representation across the
study area.

We collected tissue samples during the summers of 2011–2013
in YOSE and KICA, and delimited sampling meadows using a
park-wide vegetation map with 0.5 ha resolution (Keeler-Wolf
et al., 2012; Berlow et al., 2013). Tail tissue was collected from
larval toads using a sterilized razor blade.

Molecular Methods, ddRAD Sequencing,
and Bioinformatics
We used a ddRADseq haplotype dataset (previously described
in Maier, 2018; Maier et al., 2019) for all analyses of
genetic differentiation and structure. Details about the library
preparation, sequencing, and bioinformatic parameters used
to identify variable loci are described therein, and in the
Supplementary Materials. Briefly, genomic DNA was extracted
using a combination of 96-well glass fiber plate (Ivanova
et al., 2006) and DNeasy blood and tissue spin column
(Qiagen) protocols. A total of 535 individual Yosemite toad
(Anaxyrus canorus) tadpoles sampled from 90 meadows
across YOSE, and 109 individual tadpoles sampled from
12 meadows in KICA, were prepared using a double-digest
RADseq protocol (Peterson et al., 2012; S1 Protocol), then
sequenced using 2 × 100 bp sequencing on an Illumina
HiSeq 2500.

Stringent quality thresholds were used in the Stacks v1.19
pipeline (Catchen et al., 2011, 2013) to avoid recovering markers
from paralogous sequences. Filtering thresholds were: minimum
10× locus coverage, 75% complete loci, and minor allele
frequency of 0.05. SNPs were called using the multinomial
likelihood algorithm of Stacks, which calculates the likelihood
of the observed genotypes given the per-base sequencing error
rate. Two datasets were generated from a total of 3,261 loci
(2,318 YOSE-polymorphic loci, and 1,914 KICA-polymorphic
loci): (1) SNPs (one SNP kept per locus), and (2) full RAD-
locus haplotypes (concatenated paired-end reads were used
where possible, otherwise Read 1 was used). Some analyses
required SNP data, whereas others could accommodate the
full diversity present among multiple SNPs at a locus due
to recombination. Therefore, we used a custom python script
previously described in Maier et al. (2019) to output RAD
haplotypes in addition to SNPs (fasta2genotype.py; https://
github.com/paulmaier/fasta2genotype).

Addressing Potential Sampling Bias
Removing close relatives from population genetic datasets is
often a standard practice (Peterman et al., 2016), although it
may introduce biases if the original sampling was random.
Small and/or inbred populations naturally contain many close
relatives, and artificially distorting this composition can bias
results toward a pattern of higher genetic diversity (Waples and
Anderson, 2017). Removing data inevitably reduces precision
and statistical power. Also, kinship estimators such as COLONY
(Wang, 2004; Jones and Wang, 2010) and KING (Manichaikul
et al., 2010) cannot accurately distinguish between close relatives
and unrelated individuals from inbred populations, especially if
the markers are low-density, unmapped SNPs (Chen, Personal
Communication). To assess the impact of data removal, we
used COLONY to estimate full-sib relationships, and calculated
pairwise FST with PLINK (Purcell et al., 2007) pre- and post-
removal of putative siblings. We used the SNP dataset with YOSE
individuals only.

Delineating Population Boundaries
We initially checked all loci for deviations fromHardy-Weinberg
expectations at the meadow scale, using the adegenet v2.1.5
package (Jombart, 2008) in R v4.1.2 (R Core Team, 2021). We
then used the ade4 v1.7.18 package (Dray and Dufour, 2007)
to test for isolation-by-distance (IBD) between meadows with
a Mantel test. We used the FST dataset derived from YOSE
individual as described above. FST values were linearized into
FST/(1 − FST) as recommended by Rousset (1997). Since a
pattern of IBD or hierarchical structure can confound population
delineation algorithms that attempt to assign individuals into
a set of clearly differentiated Hardy-Weinberg populations
(Meirmans, 2012; Perez et al., 2018), we delineated current
population boundaries in three distinct ways.

First, we asked which level of population structure is generally
the smallest detectable level: meadows or neighborhoods of
nearby meadows. We used a hierarchical STRUCTURE analysis
(Vähä et al., 2007), which accounts for IBD by re-running each
clustering analysis recursively until no further sub-structure is
found. We ran STRUCTURE v2.3.4 (Pritchard et al., 2000) three
times for 4.0 × 105 steps and 1.0 × 105 burn-in with K (number
of ancestral populations) ranging from 1 to 10. The optimal K
was chosen using the 1K method of Evanno et al. (2005), and
individual runs were combined using CLUMPP (Jakobsson and
Rosenberg, 2007). This method can only test optimal K values
greater than one, so the hypothesis that K = 1 was tested using a
paired Wilcoxon test on log-likelihood values (Rosenberg et al.,
2001; Emanuelli et al., 2013), to address inherent bias of 1K
toward finding K = 2 when no further substructure exists in
reality (Janes et al., 2017). We used the haplotype dataset with
YOSE individuals only for this analysis, so as to focus on the
general pattern rather than finding every unit.

Second, we estimated which number of ancestral populations
most reliably partitions the data. We used ADMIXTURE v1.3.0,
which can efficiently apply the STRUCTURE algorithm formulti-
locus SNP genotypes at large values of K (Alexander et al., 2009).
The cross-validation procedure employed in ADMIXTURE
determines which K has the most predictive accuracy, while
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withholding data points (Alexander and Lange, 2011). We ran
ADMIXTURE with 10-fold cross-validation on K ranging from
one to the total number of meadows 1–90 (YOSE) or 1–12
(KICA). Whereas, the hierarchical STRUCTURE analysis was
used to recursively find the smallest possible unit of population
(to account for IBD), this analysis was used to find population
units that best describe the entire dataset, and thus, likely an
intermediate unit.

Finally, we took a hypothesis-driven approach to population
delineation. Given the hierarchical nature of population structure
previously described (Shaffer et al., 2000; Wang, 2012), there may
be no single “correct” level. Consequently, we hypothesized that
one level has a disproportionately large effect on partitioning
toads into genetically/demographically independent gene pools.
We used a hierarchical analysis of molecular variance (AMOVA)
on haplotype data to quantify the relative contribution of
meadows, meadow neighborhoods, and lineages to population
differentiation. Four distinct phylogenetic lineages with median
coalescent ages spanning 296–724 kya, as well as three “fused”
lineages formed by inter-lineage hybridization 254–473 kya, were
spawned by glacial pulses during the Pleistocene (Figure 1B;
Maier et al., 2019). “Meadow neighborhoods” were defined
as a group of nearby meadows with >50% assignment to
the genetic clusters derived by ADMIXTURE. We used the
poppr v2.6.1 function “poppr.amova” with 100 permutations
to test for significance. In order to correctly partition the
variance components of interest, we included all known levels:
individuals, meadows, meadow neighborhoods, lineages, and
parks. We compared the φ-statistics to values expected under
Wright’s island model (Wright, 1931), i.e., FST ≈ 1/(1 +

4Nem), using values of Ne calculated by the single-sample
linkage disequilibrium method of NeEstimator v2.01 (Do et al.,
2014). We assessed population independence with the 10%
migration rate (m) demographic guideline (Hastings, 1993) and
one migrant per generation (OMPG; i.e., Nem = 1) genetic
guideline (Wright, 1951; Mills and Allendorf, 1996).

Environmental Drivers of Asymmetrical
Migration
We hypothesized that meadow neighborhoods (see “Delineating
Population Boundaries”) included “hub” meadows that receive
and retain the majority of migrants, and lower quality “satellite”
meadows with net emigration. We tested this hypothesis by
estimating directional migration rates between meadows using
the method of Sundqvist et al. (2016). This method calculates
geometric means of allele frequencies for a theoretical pool of
migrants between each pair of meadows using alleles present in
both meadows. Then asymmetrical GST values (Nei and Chesser,
1983) are calculated by comparing each meadow to the migrant
pool. Finally, migration rates are estimated from GST values:

Nem ≈ (
(

1
GST

)

− 1)/4 (Wright, 1931). We extracted pairwise

differences between emigration and immigration to yield a
unitless measure of net relative migration δM. Relative values
are less sensitive to assumptions of the island model, such as
drift-migration equilibrium, because they only infer differential
migration without explicitly modeling any parameter. For any

comparison between two meadows, the meadow with δM < 0
has net immigration, and meadows with δM > 0 have net
emigration. For each meadow neighborhood we examined, δM
estimates were mapped onto igraph (Csárdi and Nepusz, 2006)
objects to display the extent of asymmetrical migration in each
neighborhood of meadows.

From previous research, Yosemite toads are most likely
to occupy meadows based on a network of environmental
attributes at nearby meadows (Berlow et al., 2013). Topographic
relief also is known to have a large impact on meadow-
to-meadow migration (Wang, 2012). Based on those two
likely environmental drivers, we evaluated 10 meadow-
scale environmental attributes as potential correlates of
hubs and satellites (Table 1). We used ArcGIS 10 to extract
four topographic variables derived from the Shuttle Radar
Topography Mission (SRTM; Rabus et al., 2003), and five
meadow network attributes derived from a LiDAR-based
vegetation map from YOSE (Keeler-Wolf et al., 2012). The last
variable was a network-boosted probability of toad breeding
from previous work (Berlow et al., 2013). Any variables
that did not approximate normality were transformed using
either logarithmic, exponential, or root transformations. We
identified environmental correlates of net migration (δM)
individually, using Mantel correlations as implemented by the
ncf v1.2.9 package (Bjørnstad, 2019), with 1,000 permutations
for significance. We then identified correlations collectively for
all variables using a multiple regression on distance matrices
(MRDM; Legendre et al., 1994; Lichstein, 2007), using the
method of Wang (2013), and 1,000 permutations.

We also gave “hubs” and “satellites” formal definitions based
on extreme values of net migration. Hubs were defined as
meadows with average δM that is negative, and at least one
standard deviation (SD) less than zero. Satellites were defined
as meadows with average δM that is positive, and at least one
SD greater than zero. We performed a principal components
analysis (PCA) and a linear discriminant analysis (LDA) using
theMASS v7.3.54 package (Venables and Ripley, 2002) to identify
environmental predictors of the two types. In order to determine
the most important discriminatory variables, we performed
stepwise variable selection to optimize the accuracy of predictors
using the stepclass function of the klaR v0.6.15 package (Weihs
et al., 2005). The process uses 10-fold cross-validated accuracy of
the LDA to add or remove variables until improvement is <1%.

RESULTS

Addressing Potential Sampling Bias
We found high levels of inbreeding in the final dataset. Using
2,318 un-linked SNPmarkers variable across YOSE, we estimated
that in any given meadow an average of 551 are polymorphic,
and an individual is heterozygous for an average of 233 due to
meadow-level inbreeding, with average FIS = 0.221. COLONY
estimated 173 first-degree relative pairs. Matrices of pairwise FST
calculated with and without 173 putative siblings were highly
correlated (ρ= 0.948), and therefore, should have little impact on
landscape-level results. Based on this result and the fact that close
relatives can be overestimated in systems with high inbreeding,
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TABLE 1 | Hub-satellite predictive variables.

Category Abbreviation Source Definition GIS summary

Meadow network BP (Berlow et al., 2013) Network-boosted breeding probability Value

Meadow network A YNP LiDAR Area of meadow Value

Meadow network BWA YNP LiDAR Breeding wet area Value in 1 km radius

Meadow network MA YNP LiDAR Area of meadows Value in 1 km radius

Meadow network P YNP LiDAR Length of meadow perimeter Value

Meadow network WAC YNP LiDAR Wet area of closest meadow Value

Topography ESD SRTM Elevation SD in 500m radius

Topography R SRTM Roughness index Mean in 500m radius

Topography S SRTM Slope Mean in 500m radius

Topography SPI SRTM Slope position index Mean in 500m radius

we elected to keep all individuals in the dataset to retain a robust
sample size for subsequent analyses.

Delineating Population Boundaries
Our suite of analyses supported meadows as the smallest
distinguishable genetic and demographic population unit, and
that populations were further structured by IBD among
meadows. We found significant IBD up to 30 km distances
(Figure 1C), suggesting that population structure might be
heavily influenced by stepping-stonemigration atmultiple spatial
scales. The hierarchical structure analysis revealed that 63 out
of 90 (70.0%) individual meadows in YOSE are the smallest
detectable population unit (Figure 2). The remaining units
consisted of two meadows (n = 7), three meadows (n = 1),
or 10 meadows (n = 1; Tioga). Seven phylogenetic lineages—
four pure, three of admixed origin (Maier et al., 2019)—were
distinct at high levels in the hierarchy (underlined in Figure 2).
The ADMIXTURE analysis delineated units of genetic cohesion
intermediate between meadow and lineage (Figure 1D). The
lowest ADMIXTURE cross-validation error for YOSE was found
at K=28, and for KICA was K=6, although subsequent K
values elicited only gradual increases in cross-validation error
(Supplementary Figures S1, S2). Most meadows (84.3%) were
contained in neighborhoods of two or more meadows, with a
mean size of 3.0 meadows, and a maximum of 12 meadows
(Tioga). Out of 34 total meadow neighborhoods across both
parks, 16 (47.1%) contained only one meadow. In most cases,
these singleton “neighborhoods” were in terrain separated by
canyons (e.g., Rancheria, Thompson, Wells, Tilden, and Twin
Lakes in the Y-North lineage). Names and summary statistics for
each neighborhood are in Supplementary Table S1.

The hierarchical AMOVA found a large proportion of total
variance between parks (30.46%; φPT = 0.305) as expected
(Table 2). Meadows within neighborhoods showed the next
highest variance (23.54%) and had the highest φ-statistic
(φMN = 0.406), supporting the idea that much more of
the genetic variation is partitioned among meadows than
meadow neighborhoods (3.71%; φNL = 0.06). Mean pairwise
φMN for meadows within each neighborhood had comparable
levels (mean: 0.409; sd: 0.08; Supplementary Table S1). Further,
we estimated meadows to be demographically independent

(m < 10%) based on average observed meadow Ne of 29.13
(Supplementary Table S1), and FST ≥ 0.079 (φMN = 0.406).
In contrast, we estimated neighborhoods to have average Ne of
23.33 and require FST ≥ 0.097 for demographic independence,
a value greater than the observed statistic φNL = 0.06. The
estimated threshold for genetic independence among either unit
regardless of population size (Nem ≤ 1) is FST ≥ 0.2, which
is consistent with meadows but not meadow neighborhoods
being genetically independent. Patterns of conformity to
Hardy Weinberg expectations at the meadow and meadow
neighborhood scales further supported meadow distinctiveness,
with meadows deviating at 2.48% of genotypes, compared to
4.86% for meadow neighborhoods, a nearly two-fold difference
(Supplementary Figure S3).

Environmental Drivers of Asymmetrical
Migration
Out of 34 total meadow neighborhoods across both parks,
nine contained a moderate sample size (n ≥ 5) of meadows.
We found that asymmetrical migration was strong in six
(67%) based on the presence of at least one hub or satellite
meadow, i.e., with migration greater than one standard deviation
from symmetrical (Supplementary Table S2; Figure 3). Hub
meadows showed high relative HE (Supplementary Table S1)
and much stronger genetic immigration than emigration. Out
of these nine neighborhoods initially examined, three had a
single hub meadow, and another three had two to three hubs.
Distinct satellite meadows were only identified in three (33%)
of these neighborhoods. A detailed example is depicted in
Supplementary Figure S4.

We found environmental patterns characteristic of all 18
hubs and satellites more broadly (Figure 4), regardless of
meadow count (i.e., n ≥ 2). Generally, we found that hub
meadows are significantly larger, and less topographically
complex, than satellite meadows (Figures 4A–D). The first two
principal components of the PCA accounted for 76.3% of the
variance, and this variance was orthogonally split into the
two categories of variables: meadow network attributes, and
topography (Figure 4E). However, topographic variables had a
much smaller boost to discriminatory power compared with
meadow network variables. The LDA function based on all 10
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FIGURE 2 | Hierarchical genetic structure in Yosemite NP. Barplots of recursive STRUCTURE analyses down to the smallest detectable unit. Thin, black, vertical bars

indicate meadow boundaries. Each analysis considered a range of K from 1 to 10, and the optimal K was chosen following Evanno et al. (2005). The hypothesis that

K = 1 was tested using a paired Wilcoxon test. Each cluster was rerun until reaching the meadow level or finding no further structure. The smallest detectable unit is

labeled: single meadow (small *) or multiple meadows (large *). Phylogenetic lineages from Maier et al. (2019) are underlined.

variables had a 100.0% predictive accuracy rate, and an 83.5%
cross-validated accuracy rate (Figure 4F). The stepwise variable
selection for LDA identified four variables that significantly
improved discrimination between hubs and satellites: meadow
area, breeding wet area, wet area of the closest meadow, and SD
of elevation (within 500m of the sampled location).

Individual t-tests confirmed that hubs are significantly larger,
and less topographically complex, than satellite meadows.

Compared with satellites, hub meadows (defined as having δM
values ≤ 1 SD below zero) have significantly larger mean areas (t
= 3.10, df= 10.1, p= 0.006), perimeters (t= 3.56, df= 11.3, p=
0.002), and breeding wet area within 1 km (t = 2.35, df = 13.1, p
= 0.017). Satellites have (within 500m of the sampled location):
higher slope (t = −2.51, df = 8.06, p = 0.081), elevation SD (t
= −2.1, df = 7.65, p = 0.035), and roughness index (t = −3.03,
df = 10.7, p = 0.006). Hubs also had lower mean slope within
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TABLE 2 | Analysis of Molecular Variance (AMOVA) results based on five hierarchical levels: park, lineage, meadow neighborhoods (defined by ADMIXTURE

cross-validation), meadows, and individuals. Significance is based on 100 random permutations with one-tailed test.

Variance component adf bSS cMS d
σ

e% Total fφ-Statistic gP-value

Between parks (P) 1 50745.20 50745.20 116.94 30.46 φPT = 0.305 **

Between lineages (L) within parks (P) 7 41768.02 5966.86 30.16 7.86 φLP = 0.113 **

Between neighborhoods (N) within lineages (L) 25 53314.90 2132.60 14.25 3.71 φNL = 0.060 **

Between meadows (M) within neighborhoods (N) 68 78941.58 1160.91 90.35 23.54 φMN = 0.406 **

Between individuals (I) within meadows (M) 542 95376.63 175.97 43.78 11.41 φIM = 0.331 **

Within individuals (I) 644 56931.50 88.40 88.40 23.03 φIT = 0.770 **

Total 1287 377077.82 292.99 383.89 100.00

adf = degrees of freedom.
bSS = sums of squares.
cMS = mean squares.
dσ = variance.
e% = proportion of total of variance.
fφ-statistic = ratio of variances.
gp-value = permuted probability of the observed σ by chance; **p < 0.01.

500m of the sampled location (t = −2.15, df = 9.11, p = 0.03).
Interestingly, although hubs had larger areas and larger nearby
wet areas, their nearest neighboring meadow had significantly
less wet area (t=−2.37, df= 6.01, p= 0.028). All tests remained
significant after correcting for multiple comparisons with the
FDR method (Benjamini and Hochberg, 1995) with a maximum
p-value of 0.035.

We also found significant relationships between pairwise
differences in meadow environment (δ environment)
and net asymmetrical migration (δM) using an MRDM
(Supplementary Table S3; Supplementary Figure S5). For
pairwise regression analyses, we considered all meadows in a
neighborhood, regardless of whether they were extreme hubs
or satellites. The general result can be summarized as follows:
for any two meadows in a neighborhood, the meadow with
larger area and less topographic ruggedness tends to have
net immigration (influx of gene copies). The five significant
variables in the model were: meadow area, breeding wet
area, wet area of the closest meadow, total area of meadows
within 1 km, and percent slope (within 500m of the sampled
location). The MRDM results supported the above pattern
of meadow area strongly influencing hub-satellite dynamics,
and meadow ruggedness having a small to moderate influence
(Figures 4A–D). We found that meadow area explained the
largest percentage of the variance (30.0%), followed by wet area
of the closest meadow (10.3%), while the remaining variables
collectively only accounted for 5.1% of the variance [R2

adj
=0.43,

F(10,399) = 31.79, p < 0.001].
We performed a post-hoc test of Mantel correlations (with

1,000 permutations) for each variable and found each to be
significant after correcting for multiple comparisons with the
FDR method. Interestingly, this included a small but significant
positive correlation between δM and δ(slope position index)
meaning that meadows closer to hilltops have net genetic influx
(ρ = 0.11, p = 0.013). We also found a small but significant
positive correlation between δM and δ (breeding probability),

indicating that meadows with higher probability of breeding have
net genetic influx (ρ = 0.14, p= 0.007).

DISCUSSION

Are Meadows a Useful Unit for Population
Management?
We found that individual toad meadows are genetically
distinguishable in 70% of cases, and that almost half (47.1%; n =

16) ofmeadow neighborhoods contain onemeadow (Figures 1D,
2). Moreover, we found that meadows are the unit contributing
most to population subdivision (φMN = 0.406) compared with
meadow neighborhoods (φNL = 0.06) and lineages (φLP =

0.113) (Table 2). Our results are broadly consistent with previous
findings of significant among-“pond” (=meadow) variation
(Shaffer et al., 2000); however, they are informed by substantially
expanded sample size (n = 102; n = 28), marker set (n =

3,261; n = 1), and number of hierarchical levels (n = 5; n =

3). Our estimates of average meadow migration rate (m≪ 10%)
and number of migrants (Nem ≪ 1) are based on island model
assumptions; however, our result (meadows are the most distinct
unit) is robust to those assumptions.

Meadow distinctness makes sense given that toad-occupied
meadows in YOSE have a mean radius of 266m (Keeler-
Wolf et al., 2012), and are typically surrounded by more
xeric vegetation. Yosemite toads are observed to have small
average home range size (radius: 92–166m) and high rates of
philopatry in short-termmark-recapture studies (Sherman, 1980;
Martin, 2008; Liang, 2010). A sample of five other Nearctic
toads (formerly “Bufo”) have comparable average home ranges,
with radius between 15 and 390m (Denton and Beebee, 1993;
Kusano et al., 1995; Muths, 2003; Forester et al., 2006). Yosemite
toads may occasionally travel long distances (maximum 1,261m;
Martin, 2008; Liang, 2010), but this may be infrequent enough for
most meadows to remain independent population units.
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FIGURE 3 | Asymmetrical migration in meadow neighborhoods. Most of the meadow neighborhoods with five or more meadows are groups of closely related

meadows with one or a few highly admixed “hubs” surrounded by more genetically distinct “satellites.” For each neighborhood, net asymmetry in migration rates

(difference between emigration and immigration) is summarized by direction and shade of arrow. Meadow IDs and associated neighborhood names are labeled for all

nine neighborhoods in YOSE and KICA that contain five or more meadows. Meadow node sizes are weighted by expected heterozygosity (HE ; see

Supplementary Table S1). Inset maps denote location of each meadow neighborhood (A–I) and have identical colors to Figure 1D. Numbers following

neighborhood names indicate number of identified hubs/satellites (i.e., δM more than one standard deviation from zero).

Although most meadows are genetically distinct, 84.3% of
meadows are members of multi-meadow neighborhoods, and
inter-meadow genetic rescue may be important over longer time
scales. Also, several exceptions to this pattern exist: e.g., Tioga,
Conness, Ireland, and White Wolf meadow neighborhoods
appear undifferentiated, due to high gene flow or recent
colonization (Figure 2). Two out of four of these undifferentiated
neighborhoods (Tioga and White Wolf) are bisected by a major
highway (CA-120), which has been identified as a barrier to
connectivity (Maier, 2018). Future work should try to precisely
estimate migration relative to demographic stability of these
meadows, for example by using parentage analysis, genetic
assignment, and simulations (Peery et al., 2008, 2010).

Meadow Attributes Impact Network
Connectivity
Despite the distinctness of most meadows, we found low-
level migration amongst meadows in neighborhoods. Strong

asymmetrical migration was found in over half (53%) of
the neighborhoods containing two or more meadows. Our
asymmetrical migration analysis found that larger and
topographically flatter meadows predictably (with 83.5%
cross-validated accuracy) act as regional genetic hubs (Figures 3,
4), and often these meadows are centrally positioned in
the spatial arrangement of these meadow neighborhoods
(e.g., Supplementary Figure S4). This means that one or
several meadows within each neighborhood tend to receive a
disproportionately large amount of genetic input and send a
disproportionately small amount of genetic output. Hubs tended
to be not only bigger and flatter, but have more wet area nearby,
and be positioned closer to hilltops than satellites. Aside from
large meadow area, the second-best discriminator of hubs was
that they neighbored a meadow with minimal wet area. This
may underscore the importance of juxtaposing breeding habitat
with more xeric upland meadow habitat, which plays a vital
role in Yosemite toad foraging and hibernation (Sherman, 1980;
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FIGURE 4 | Attributes of hub and satellite meadows. Hub (exceptional immigration rate) and satellite (exceptional emigration rate) meadows from Figure 3 are related

to several environmental variables. Relationship between net relative migration (δM) and relative difference in pairwise meadow area (A) and slope (C) are shown. In

(B,D), these pairwise differences are aggregated by meadow to show mean meadow area and slope for hubs and satellites (i.e., meadows having δM more than one

standard deviation from zero). (E) Principal components analysis (PCA) of meadow environment. Variables are described in Table 1. (F) Linear discriminant analysis

(LDA) showing the predictive accuracy of these 10 variables to discriminate between hubs and satellites.

Morton, 1981; Martin, 2008). It is important to note that due to
collinearity, it is also possible that big, wet meadows necessarily
exist adjacent to relatively dry neighbor meadows, but without a
larger dataset these two variables are difficult to disentangle.

Contrasting environmental correlates have previously been
found for persistent vs. intermittent meadows; proximity to fire
perimeters and timber harvest were predictors of intermittently
occupied meadows in one study (Liang and Stohlgren, 2011).

Frontiers in Conservation Science | www.frontiersin.org 10 April 2022 | Volume 3 | Article 851676

https://www.frontiersin.org/journals/conservation-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/conservation-science#articles


Maier et al. Yosemite Toad Gene Pool Boundaries

However, the present study offered the first insight into genetic
hub-satellite structure, with 10m resolution of meadow network
attributes that predict hubs and satellites. High hub genetic
diversity appears to reflect genetic admixture; multiple satellite
meadows surround them and promote the mixing of genetically
diverse toads in a central area. The ultimate cause for this
is unclear: perhaps temporally fluctuating habitat quality or
low carrying capacity in satellite meadows periodically sends
migrants seeking refuge in hub meadows (Holt et al., 2004).
Our result is consistent with the discovery that toad breeding
detection in YOSE has increased at higher quality meadows,
between two survey efforts spaced one decade apart (Lee et al., see
text footnote 1, respectively). If climate change or other stressors
are degrading marginal habitat in satellites, then toads may be
consolidating at hubs in response.

By the same token, large hub meadows may act as genetic
(pseudo-)sinks because breeding toads show higher rates of
philopatry within superior breeding conditions. Populations
below carrying capacity may be demographically independent
if they do not require immigration to persist (Watkinson and
Sutherland, 1995). For example, the pseudo-sink populations
of the butterfly Euphydryas editha survived a severe frost in
nearby Sequoia National Forest, after which they thrived and
became sources (Thomas et al., 1996; Boughton, 1999). Thus,
net immigration in hubs could reflect recent environmental
disturbance. We also cannot rule out the possibility that hubs
are actually source populations, but with excess private alleles.
The premise of the private allele method used in this study is
that populations with more unique alleles are more isolated.
However, hubs may simply be larger and more stable populations
that have accumulated more diversity, and the homogeneity
of satellite populations may be due to recent founder effects
(Sundqvist et al., 2016). This alternative is not easily disentangled
using a single genetic dataset and is better tested by tracking
studies. Regardless, hub admixture is a common pattern in
our study. Since admixture is pervasive on a larger scale (i.e.,
between lineages; Maier, 2018; Maier et al., 2019; Figures 1A,B),
it is unsurprising to find admixture plays an important role at
a smaller scale. This result comes with the caveat that many
neighborhoods have few meadows (n = 3.0). Therefore, there
are also many examples of isolated meadows and meadow pairs
existing without a large, admixed meadow nearby.

Conclusions and Conservation
Implications
Meadows are the most genetically distinct unit of population
for Yosemite toads. However, our fine-scale sampling and
environmental analysis showed that this is not the entire story.
Most (84.3%) of toad meadows exhibit low levels of gene
flow with neighborhood meadows, in many cases displaying
hub-satellite structure. Genetic distinctness is consistent with
the MU definition; however, recent demographic declines
(Sherman and Morton, 1993; Green and Sherman, 2001; Ne

estimates in Supplementary Table S1) suggest that present and
future population viability of Yosemite toads may depend on
connectivity between meadows.

Hub meadows may be robust to climate change and
fluctuations, given their pattern of higher immigration and

genetic diversity. Therefore, hub meadows may be important
refugia for nearby meadows with environmental instability,
although this assumes hub meadows are not also in danger of
demographic decline. Climate change (Brown et al., 2015; Maier,
2018), disease (Lindauer, 2018; Lindauer and Voyles, 2019), or
synergistic effects between the two (Lindauer et al., 2020) may
continue to reduce carrying capacity and growth rate, while
reducing gene flow from satellites as well as foreign meadow
neighborhoods, which could eventually force all meadows toward
an extinction vortex.

Mitigation efforts in the short term could take advantage
of the higher genetic diversity of hubs for translocation efforts
or captive breeding programs. Although hubs are a potentially
useful resource for medium to large meadow neighborhoods,
many meadows exist in isolation. Out of 102 meadows in our
study, 16 were singleton “neighborhoods” and a further eight
were neighborhoods of only two. Isolated meadows could also be
prioritized for protection efforts due to their potentially unique
genotypes, which may play a role in future adaptation to climate
change and/or disease.

Future research could investigate the population dynamics
of hub and satellite meadows over multiple generations, to
determine parameters such as growth rate and net migration
rate. We found that hubs are identifiable 100% of the time
in our dataset, and with 83.5% cross-validated accuracy, based
primarily on meadow size, proximity to upland habitat, and
gentle topography, to a lesser extent. Those variables may
be useful proxies for genetic hubs in Yosemite toad meadow
complexes across the species distribution.
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