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Abstract

Recessive dystrophic epidermolysis bullosa (RDEB) is a rare genodermatosis caused

by mutations in the gene coding for type VII collagen (COL7A1). More than
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800 different pathogenic mutations in COL7A1 have been described to date; how-

ever, the ancestral origins of many of these mutations have not been precisely identi-

fied. In this study, 32 RDEB patient samples from the Southwestern United States,

Mexico, Chile, and Colombia carrying common mutations in the COL7A1 gene were

investigated to determine the origins of these mutations and the extent to which

shared ancestry contributes to disease prevalence. The results demonstrate both

shared European and American origins of RDEB mutations in distinct populations in

the Americas and suggest the influence of Sephardic ancestry in at least some RDEB

mutations of European origins. Knowledge of ancestry and relatedness among RDEB

patient populations will be crucial for the development of future clinical trials and the

advancement of novel therapeutics.
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1 | INTRODUCTION

Recessive dystrophic epidermolysis bullosa (RDEB) is a rare

genodermatosis characterized by severe skin fragility and blistering

resulting in chronic wounds with progressive fibrosis (Mittapalli

et al., 2019), caused by mutations in the gene coding for type VII col-

lagen (COL7A1) (Hovnanian et al., 1994). More than 800 different

pathogenic mutations in COL7A1 have been described to date

(Stenson et al., 2017); however, the ancestral origins of these muta-

tions have not been precisely identified. Furthermore, little knowledge

exists of the descendants of isolated Sephardic communities on the

Iberian Peninsula, populations that characteristically propagate reces-

sive diseases such as RDEB (Nogueiro et al., 2015a; Nogueiro

et al., 2015b). The successful identification of common origins in dis-

tinct RDEB populations will provide an important resource as new

treatments involving gene editing approaches for RDEB and other

severe genetic skin diseases become viable for early clinical trials. In

this study, 32 Hispanic RDEB patient samples carrying common

COL7A1 gene mutations from the Southwestern United States, Mex-

ico, Chile, and Colombia were genotyped to investigate the ancestral

origins for COL7A1 mutations and determine the extent to which

shared ancestry contributes to RDEB in these populations.

2 | RESULTS

The 32 Hispanic RDEB patients included in this study from the South-

western United States, Mexico, Chile, and Colombia (see Table 1)

carry pathogenic COL7A1 gene mutations that were genotyped with

different sequencing techniques and confirmed by Sanger

Sequencing.

To further investigate ancestral patterns in the Hispanic RDEB

population, a principal component analysis (PCA) and admixture analy-

sis were performed (Alexander et al., 2009) on genomewide

genotyping data alongside a reference panel consisting of

500 individuals from African, Middle Eastern, and European ancestry

(Chang et al., 2015). In the PCA, the majority of the individuals are

scattered between European and Native American populations

(Figure 1). For Admixture, we identified three different European com-

ponents, evident in Figures 2 and S1, modal in Western Europe (blue),

Middle East and the Caucasus (red), and the Arabian peninsula (green),

supporting the presence of Sephardic ancestry. For the American

component, we identified at K = 8, a high variation in ancestral com-

ponents, with an almost complete overlap between ancestry and pop-

ulation, possibly reflecting isolation and inbreeding dynamics, well-

known in Jewish populations. Furthermore, Admixture analysis shows

similar European and Native American ancestral components in the

majority of the RDEB patients, with a minor, but consistent contribu-

tion from African groups (pink in Figure 2). A non-negative least

squares (NNLS) haplotype-based method also supported overriding

European and Native American origins, yet the majority (84%) of indi-

viduals harbor a small component (>2%) of North African and Middle-

Eastern ancestry (Figure 3, shown in green), which may result from

interactions between North Africa or Jewish populations and Iberian

populations. The evidence of North African and Middle-Eastern line-

age substantiates, at least in part, the influence of Sephardic Jews in

the Hispanic RDEB population.

To further explore the origin of these mutations, we estimated

local ancestry across the COL7A1 locus in all 32 RDEB patients using

a reference panel consisting of African, European, and Native Ameri-

can populations (see Methods and Materials). Pathogenic mutations at

the locus were determined separately from the local ancestry and are

thus not phased with the local ancestry estimates, however most

patients (25/32) had just one ancestry at both copies of the locus, all-

owing us to gain insights into the ancestral source of the 20 mutations

present on these haplotypes (Table 2). Seventeen of the mutations

appear in patients with a single ancestry at both copies of COL7A1

(Table 2). Two additional mutations (c.7708delG and c.5532

+ 1G > T) are present only in individuals with either a single ancestry

at both copies of the locus or mixed ancestry at the locus, and may
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thus be attributed to a single ancestral population in our data. Nota-

bly, a single mutation, c.2470insG, appears to have originated inde-

pendently in both ancestral European and Native American

populations. In total, 10 of the mutations appear to have arisen on

Native American haplotypes, 8 on European haplotypes, and 4 are

observed only in individuals with mixed ancestry and cannot be

determined.

In order to evaluate the temporal origins of COL7A1 mutations in

our dataset, we looked for shared haplotypes between patients and

identified an enrichment of identity by descent (IBD) in the region sur-

rounding the COL7A1 gene on chromosome 3 (Figure 4), supporting

recent shared ancestry among at least some of the patients, even

though none are known to be closely related. From among the

32 RDEB patients, we identified three different IBD clusters, each

representing a single shared haplotype, indicating recent shared

ancestry between these individuals (Table 3).

The largest cluster is comprised of 4 individuals (2 from Chile,

1 from Colombia, and 1 from Mexico) (Table 3, Cluster A). The

observation that 3/4 of the patients carry at least one copy of the

pathogenic RDEB mutation c.6527_6528insC mutation, with no

other COL7A1 mutation being shared by all individuals in the clus-

ter, suggests that the haplotype shared by individuals in the clus-

ter carries the c.6527_6528insC mutation. It is possible that the

pathogenic mutation of the patient who does not carry the

c.6527_6528insC mutation was incompletely characterized, or

that the shared haplotype does not encompass the mutation.

Local ancestry indicates that the shared haplotype is of European

origin.

TABLE 1 COL7A1 mutations in
Hispanic RDEB patients

FTDNA kit no. Mutation 1 Mutation 2 Sephardic Test site

MK40784 c.6527_6528insC c.8329C > T 21% Chile

730,451 c.2470insG c.2470insG 18% Mexico

MK40790 c.6527_6528insC c.5856 + 1G > T 15% Chile

MK40779 c.7485 + 1G > A c.4635 + 5G > A 10% Colombia

MK42684 c.2470insG c.2470insG 9% Mexico

730,456 c.2470insG c.2470insG 7% Mexico

662,380 c.7485 + 5G > A c.7485 + 5G > A 8% Colorado

MK40771 c.8200G > A c.4965C > T 7% Colombia

MK40789 c.7708delG c.7876-1G > A 5% Chile

662,381 c.7485 + 5G > A c.7485 + 5G > A 4% Colorado

MK40776 c.7651G > C c.4012G > A 4% Colombia

MK40782 c.6781C > T c.2044C > T <2% Colombia

MK40777 c.1584G > T c.1584G > T — Colombia

MK40787 c.2005C > T c.4342-2A > G — Chile

MK42706 c.5108G > A c.IVS23-1G > A — Mexico

730,454 c.2470insG c.2470insG — Mexico

MK40794 c.2992 + 2 T > G c.6527_6528insC — Chile

MK40795 c.3264_5293del c.5532 + 1G > T — Chile

MK40785 c.3759 + 2 T > G c.3759 + 2 T > G — Chile

MK40772 c.425A > G c.8833 T > C — Colombia

MK40775 c.4510G > T c.4510G > T — Colombia

MK40778 c.4678G > A c.4678G > A — Colombia

MK40793 c.5532 + 1G > T c.8245G > A — Chile

MK40792 c.5932C > T c.5932C > T — Chile

MK40780 c.6091G > A c.6091G > A — Colombia

MK40783 c.6527_6528insC c.6527_6528insC — Chile

MK40788 c.6527_6528insC c.8528-1G > A — Chile

MK40773 c.6527_6528insC c.5604 + 1G > A — Colombia

MK40791 c.7708delG c.7708delG — Chile

MK40786 c.7708delG c.8393 T > G — Chile

MK40774 c.8046 + 6G > A c.5047C > T — Colombia

MK42683 c.8709del11 c.G2899del11 — Mexico
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A second IBD haplotype is shared by two RDEB patients from

Mexico (Table 3, Cluster B). Both patients are homozygous for the

c.2470insG mutation, and both are homozygous for the shared haplo-

type. Local ancestry across the COL7A1 locus on the shared haplotype

indicates that it is likely of European origin.

The third IBD haplotype is shared by two RDEB patients from

Chile carrying the c.7708delG mutation (Table 3, Cluster C), one of

whom is homozygous for the shared haplotype and the mutation.

Native American local ancestry across the COL7A1 locus in all patients

suggests that this mutation arose in the Americas.

Multiple other mutations are observed multiple times in the

RDEB patients without being part of an IBD cluster. We do not rule

out the possibility that at least some of these mutations may have

been inherited from a common ancestor, but recombination in inter-

vening generations has interrupted the inherited haplotype to a size

below detection thresholds. On the other hand, it is also reasonable

to consider that at least some of these mutations may have arisen

independently.

3 | DISCUSSION

Admixed populations present challenges in understanding the history

of disease, particularly in regions where each population can have a

F IGURE 2 Admixture analysis. Population structure of 32 RDEB samples inferred by Admixture analysis. Each individual is represented by a
vertical (100%) stacked column of genetic components proportions shown in color for K8 (K = number of subpopulations). The RDEB population
is marked with an asterisk

F IGURE 1 A Principal Component Analysis (PCA) was carried out on a dataset composed of 516 individuals in total, including 32 RDEB
samples. The RDEB samples are marked with a teal blue square “ ” and represent substantial admixture with Native American and European
individuals, including Sephardic Jews represented with light blue circles in the right upper corner “ ”. The legend in the left lower corner denotes
the color markers exhibited in the PCA analysis. The X and Y axis refer to Principal Component (PC) 1 and 2, respectively
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different admixture history. The high frequency of shared haplotypes

harboring pathogenic RDEB mutations among unrelated patients in

our data suggests that founder or other demographic events may have

increased the prevalence of these pathogenic haplotypes in Hispanic

populations in the Americas. We also present evidence that RDEB

mutations in multiple Hispanic populations have ancestral origins from

both European and Native American ancestral populations, with at

least one mutation (c.2470insG) having origins from both ancestral

populations. We note that because the number of observations of

each mutation in our dataset is limited by our patient sampling, it is

possible that other mutations presented here also have other origins

that simply are not sampled in our patients. Thus, we cannot exclude

the possibility that these other mutations have independent origins in

other ancestral populations.

Eleven of the RDEB patients presented here had substantial

amounts (>4%) of Sephardic ancestry using FamilyTreeDNA ances-

try testing, a finding confirmed by a significantly higher proportion

of European and American ancestry in these patients compared to

the remainder of the RDEB patients (Figure 5). The finding is not

entirely unexpected as it is known that Sephardic individuals

arrived in the Americas in the late 15th century, and Sephardic

ancestry has been previously detected in some Hispanic

populations, with some Sephardic mutations being observed in for-

mer Spanish colonies such as the Southwestern US, Mexico, and El

Salvador (Ellis et al., 1998; Ostrer, 2016; Shahrabani-Gargir

et al., 1998; Struewing et al., 1995; Velez et al., 2012). Notably, sig-

nificant admixture also occurred between North African non-

Jewish populations and Sephardic Jews following their expulsion

from Spain during the Inquisition (Aksentijevich et al., 1993;

Campbell et al., 2012), which may explain the ancestral

(a)

(b)

F IGURE 3 NNLS haplotype method. The NNLS Haplotype method exhibits a bar plot of the ancestral composition for a set of surrogate
groups, as demonstrated in the legend. Implemented in CP and merged with HGDP sequences, each individual (recipient) was painted as a
combination of genomic fragments inherited by all the HGDP panel (donors). Thirty-two Hispanic RDEB patient samples carrying common
mutations in the COL7A1 gene sorted according to Middle Eastern ancestry from the Southwestern United States, Mexico, Chile, and Colombia
(a). Asterisks in (a) highlight the samples shown in (b). The analysis of RDEB samples with affinity to Sephardic origins sorted according to Middle
Eastern ancestry demonstrate North African and Middle Eastern origins, highlighted in green, effectively supporting hidden genetic ancestry in
heavily admixed individuals (b)

F IGURE 4 Identity by descent (IBD). Cumulative depth of
identical by descent (IBD) segments from all pairwise sample
comparisons across chromosome 3 (blue vertical line indicates the
location of COL7A1)
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components in the NNLS related to African and Middle Eastern

populations (Figures 2 and 3).

The recognition that the European haplotype shared by individuals

carrying the c.6527_6528insC mutation represents patients from three

separate populations could suggest that the arrival of the mutation on the

haplotype predates European settlement. This knowledge would be con-

sistent with estimates of the first occurrence of the c.6527_6528insC

mutation more than 3000 years ago when pre-Roman communities set-

tled in the Iberian Peninsula (Sanchez-Jimeno et al., 2013). Interestingly,

this region was also home to a closed endogamous community of Sephar-

dic Jews during a time period more than a millennium ago, coinciding with

the estimated origin of the c.6527_6528insC founder mutation (Adams

et al., 2008). The c.6527_6528insC mutation remains frequent on the Ibe-

rian Peninsula of Spain and it is possible that at least some Hispanic

populations inherited this mutation through Hispanic or Sephardic migra-

tion. Data from the original source of Sephardic Jews on the Iberian Pen-

insula is limited and the question of Sephardic origins is challenging as

Sephardic and Spanish ancestry signals are likely to be largely overlapping

due to centuries of cohabitation (�Alvarez-�Alvarez et al., 2018; Nogueiro

et al., 2015b).

From the analyses presented here, the observation that at

least some RDEB mutations appear to have European origins lends

some support to the hypothesis that some of the pathogenic RDEB

mutations presented here are of Sephardic origin. Population fre-

quencies represented in gnomAD indicate slight enrichment with

European populations in eight Hispanic RDEB mutations

(Table S1), providing rationale for further investigation of Sephar-

dic ancestry in these variants (Collins et al., 2020; Karczewski

et al., 2020; Landrum et al., 2020). Interestingly, there are a few

rare variants demonstrating enrichment with African populations,

which may represent the Sephardic populations of North Africa

(Gonçalves et al., 2005). Establishing more confident and specific

inferences of the ancestral origins of the mutations present in the

Hispanic RDEB patients will benefit from additional sampling from

ancient and modern-day Sephardic populations as well as from the

populations from which the RDEB samples were collected.

Gene-editing treatments for RDEB patients using guide RNAs

specific to pathogenic mutations are anticipated in the near future

(Bonafont et al., 2019; Mencía et al., 2018). As regulatory agencies

may consider each guide RNA as a separate drug, separate clinical tri-

als for each RNA would be required. Patient populations who share

the same founder mutations therefore represent an increasingly

important resource to facilitate early clinical trials and advance novel

treatments.

TABLE 2 Counts of local ancestry at
COL7A in RDEB patients for each
mutation Mutation

Counts of local ancestry at COL7A in RDEB patients for each mutation

AMR EUR Mixed

c.7485 + 5G > A 4 0 0

c.7708delG 3 0 1

c.2470insG 2 6 0

c.4510G > T 2 0 0

c.1584G > T 2 0 0

c.6091G > A 2 0 0

c.5108G > A 1 0 0

c.8200G > A 1 0 0

c.2005C > T 1 0 0

c.IVS23-1G > A 1 0 0

c.4965C > T 1 0 0

c.6527_6528insC 0 6 1

c.4678G > A 0 2 0

c.3759 + 2 T > G 0 2 0

c.5932C > 0 2 0

c.7651G > C 0 1 0

c.2992 + 2 T > G 0 1 0

c.3264_5293del 0 1 0

c.5532 + 1G > T 0 1 1

c.8709del11 0 1 0

c.425A > G 0 0 1

c.8046 + 6G > A 0 0 1

c.7485 + 1G > A 0 0 1

c.6781C > T 0 0 1
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4 | MATERIALS AND METHODS

Thirty-two RDEB homozygous and compound heterozygous patient

samples from the Southwestern United States, Mexico, Chile, and

Colombia with common mutations in COL7A1 included in this study

were previously identified using different sequencing technologies

and subsequently confirmed by Sanger sequencing (Table 1). Informed

written consent was obtained from all patients in concordance with

Institutional Review Board approval from the USA: Colorado Multiple

Institutional Review Board (COMIRB no: 09-0192), Mexico:

Universidad de Monterrey (132012-CE), Chile: Comité �Etico

Científico, Facultad de Medicina, Clinica Alemana—Universidad del

Desarrollo (Project number 2013-145), and Colombia: Universidad

del Rosario (CIE-UR DVO005 1149-CV1192).

4.1 | Illumina bead chip array and FTDNA family
finder analysis

DNA samples were genotyped by GeneByGene, Inc. utilizing the

Illumina Human OmniExpress BeadChip array and analyzed with

the FTDNA Family Finder autosomal DNA test. The Family Finder test

returns results for about 690,000 pairs of single nucleotide polymor-

phisms (SNPs) on the 22 pairs of autosomal chromosomes. Autosomal

SNPs are clustered into sets about 50–100 SNPs long that are

predefined based on the reliability, variability, average centiMorgans

(cM), and density of the SNPs. The Family Finder software then evalu-

ates SNP sets for matching as half identical or a non-match based on

an autosomal DNA algorithm demonstrating shared DNA segments.

Adjacent SNP sets are also analyzed to see if they qualify as identical

by descent (IBD) segments. A segment is considered a candidate auto-

somal match if it contains at least 500 SNPs, and it is at least 1 cM

long. Then, proprietary rules based on total shared cM and longest

segment cM are applied to infer whether the match is valid.

The RDEB DNA samples were then subset to approximately

245,000 unlinked SNPs and run through ADMIXTURE using

FamilyTreeDNA's proprietary global reference panel called

myOrigins2. The 24 global population clusters represent modern

human genetic variation and results reflect admixture between histori-

cal gene pools. They include Sephardic, Ashkenazi, North and Central

America, South America, British Isles, Scandinavia, Finland, West and

Central Europe, Southeast Europe, East Europe, Iberia, West Middle

East, East Middle East, Asia Minor, North Africa, East Central Africa,

South Central Africa, West Africa, Central Asia, South Central Asia,

Siberia, Northeast Asia, Southeast Asia, and Oceania. Affinity to

Sephardic origins is determined significant by at least a 4% match

to the Sephardic cluster (Chac�on-Duque et al., 2018).

4.2 | Identity by descent analysis

We merged the genotyping data from RDEB patients with genotypes

from a combined reference dataset consisting of individuals from theT
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Human Genome Diversity Project (HGDP) (Cann et al., 2002) and

1000 Genomes (Genomes Project et al., 2010; Genomes Project

et al., 2012; Genomes Project et al., 2015), and phased the entire mer-

ged dataset using EAGLE2 (Loh et al., 2016) with default parameters.

Phased haplotypes were then fed through iLASH to detect identical

by descent (IBD) regions greater than or equal to 3 cM between pairs

of RDEB patients. Cumulative IBD depth at each marker was calcu-

lated using a custom python script that counts the total number of

times each locus is part of an IBD segment shared between two indi-

viduals. We used DASH (Gusev et al., 2011) with a minimum cluster

size of 3 and a minimum haplotype length of 3 cM to identify clusters

of patients that share the same IBD haplotypes across the entirety of

COL7A1.

4.3 | Local ancestry analysis

We used phased haplotypes (see “Identity by Descent Analysis”) from
RDEB patients in RFMix (Maples et al., 2013) (version 1.5.4) with a

reference panel consisting of European and nonadmixed African

populations (ESN, GWD, MSL, LWK, YRI) from 1000 Genomes and

107 indigenous American individuals from HGDP to train the random

forests. The estimates for local ancestry presented in the article are

generated from the RFMix Viterbi output.

4.4 | PCA and admixture analysis

In order to explore the ancestry of the analyzed individuals, an explor-

ative analysis was carried out using a PCA and Admixture approach

(Alexander et al., 2009). We merged the genotype data with publicly

available genome-wide datasets (Behar et al., 2010; Behar

et al., 2013; Kushniarevich et al., 2015; Ongaro et al., 2019; Tambets

et al., 2018; Tamm et al., 2019; Yunusbayev et al., 2012; Yunusbayev

et al., 2015) using PLINK 1.9, a widely used program for research in

population genetics (Chang et al., 2015). After merging, SNPs and indi-

viduals characterized by less than 3% and 5% of missing data were

retained for a total of 87,181 SNPs, and 516 individuals. A PCA was

carried out using the PCA flag in PLINK1.9 (Chang et al., 2015).

The Admixture analysis was carried out on the dataset with ran-

dom seed and cross-validation based on data resampling. Although

the most supported configuration is K = 9, we are showing K = 8, for

which European and the Middle East ancestries show a reasonable

degree of differentiation (Figure S1).

4.5 | CP and NNLS

The ancestry composition of the analyzed individuals was explored

utilizing haplotype method implemented in ChromoPainter (CP,

Lawson et al., 2012). The analyzed samples were merged with the

HGDP sequences in order to increase the density of the data

(Bergström et al., 2019). First, the sequence data SNPs coordinates

were lifted from Ghch38 to hg19 using Picard Tools (Picard, 2020).

The merged dataset was subsequently phased using shapeit ver

2. using default settings (Delaneau et al., 2011). Second, each individ-

ual (recipient) was painted as a combination of genomic fragments

inherited by all the HGDP panel (donors), an effective way to unlock

the hidden genetic ancestry in heavily admixed individuals (Montinaro

et al., 2015; Ongaro et al., 2019). The nuisance parameters were set

as M = 0.0018 and n = 409, estimated based on expectation maximi-

zation run in a subset of five individuals from each population.

The resulting copying vectors were subsequently normalized and

each RDEB patient individual ancestry was reconstructed as a combi-

nation of copying vectors from all the populations in the HGDP

dataset, using a modified version of the NNLS function of R software

implemented in GlobeTrotter (Hellenthal et al., 2014; Leslie

et al., 2015). The results for the RDEB patients are summarized in

Figure 4. Populations contributing on average less than 1% were

labeled as others.
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